AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neoplasms

Showing 11 to 20 of 1991 articles

Clear Filters

Application of Generative Artificial Intelligence for Physician and Patient Oncology Letters-AI-OncLetters.

JCO clinical cancer informatics
PURPOSE: Although large language models (LLMs) are increasingly used in clinical practice, formal assessments of their quality, accuracy, and effectiveness in medical oncology remain limited. We aimed to evaluate the ability of ChatGPT, an LLM, to ge...

Driving Knowledge to Action: Building a Better Future With Artificial Intelligence-Enabled Multidisciplinary Oncology.

American Society of Clinical Oncology educational book. American Society of Clinical Oncology. Annual Meeting
Artificial intelligence (AI) is transforming multidisciplinary oncology at an unprecedented pace, redefining how clinicians detect, classify, and treat cancer. From earlier and more accurate diagnoses to personalized treatment planning, AI's impact i...

MANIFEST: Multiomic Platform for Cancer Immunotherapy.

Cancer discovery
Immunotherapy has revolutionized survival outcomes for many patients diagnosed with cancer. However, biomarkers that can reliably distinguish treatment responders from nonresponders, predict potential life-threatening and life-changing drug-induced t...

Enhancing F-FDG PET image quality and lesion diagnostic performance across different body mass index using the deep progressive learning reconstruction algorithm.

Cancer imaging : the official publication of the International Cancer Imaging Society
BACKGROUND: As body mass index (BMI) increases, the quality of 2-deoxy-2-[fluorine-18]fluoro-D-glucose (F-FDG) positron emission tomography (PET) images reconstructed with ordered subset expectation maximization (OSEM) declines, negatively impacting ...

Exploratory Analysis of Nationwide Japanese Patient Safety Reports on Suicide and Suicide Attempts Among Inpatients With Cancer Using Large Language Models.

Psycho-oncology
OBJECTIVE: Patients with cancer have a high risk of suicide. However, evidence-based preventive measures remain unclear. This study aimed to investigate suicide prevention strategies for hospitalized patients with cancer by analyzing nationwide patie...

Structure-based artificial intelligence-aided design of MYC-targeting degradation drugs for cancer therapy.

Biochemical and biophysical research communications
The MYC protein is an oncoprotein that plays a crucial role in various cancers. Although its significance has been well recognized in research, the development of drugs targeting MYC remains relatively slow. In this study, we developed a novel MYC pe...

Medical accuracy of artificial intelligence chatbots in oncology: a scoping review.

The oncologist
BACKGROUND: Recent advances in large language models (LLM) have enabled human-like qualities of natural language competency. Applied to oncology, LLMs have been proposed to serve as an information resource and interpret vast amounts of data as a clin...

An efficient patient's response predicting system using multi-scale dilated ensemble network framework with optimization strategy.

Scientific reports
The forecasting of a patient's response to radiotherapy and the likelihood of experiencing harmful long-term health impacts would considerably enhance individual treatment plans. Due to the continuous exposure to radiation, cardiovascular disease and...

Association Between Risk Factors and Major Cancers: Explainable Machine Learning Approach.

JMIR cancer
BACKGROUND: Cancer is a life-threatening disease and a leading cause of death worldwide, with an estimated 611,000 deaths and over 2 million new cases in the United States in 2024. The rising incidence of major cancers, including among younger indivi...

Deep scSTAR: leveraging deep learning for the extraction and enhancement of phenotype-associated features from single-cell RNA sequencing and spatial transcriptomics data.

Briefings in bioinformatics
Single-cell sequencing has advanced our understanding of cellular heterogeneity and disease pathology, offering insights into cellular behavior and immune mechanisms. However, extracting meaningful phenotype-related features is challenging due to noi...