AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Neurons

Showing 41 to 50 of 1317 articles

Clear Filters

The evolution of patch-clamp electrophysiology: Robotic, multiplex, and dynamic.

Molecular pharmacology
The patch-clamp technique has been the gold standard for analysis of excitable cells. Since its development in the 1980s, it has contributed immensely to our understanding of neurons, muscle cells, and cardiomyocytes and the ion channels and receptor...

Neuroevolution insights into biological neural computation.

Science (New York, N.Y.)
This article reviews existing work and future opportunities in neuroevolution, an area of machine learning in which evolutionary optimization methods such as genetic algorithms are used to construct neural networks to achieve desired behavior. The ar...

The calcitron: A simple neuron model that implements many learning rules via the calcium control hypothesis.

PLoS computational biology
Theoretical neuroscientists and machine learning researchers have proposed a variety of learning rules to enable artificial neural networks to effectively perform both supervised and unsupervised learning tasks. It is not always clear, however, how t...

A deep learning pipeline for three-dimensional brain-wide mapping of local neuronal ensembles in teravoxel light-sheet microscopy.

Nature methods
Teravoxel-scale, cellular-resolution images of cleared rodent brains acquired with light-sheet fluorescence microscopy have transformed the way we study the brain. Realizing the potential of this technology requires computational pipelines that gener...

Low-power artificial neuron networks with enhanced synaptic functionality using dual transistor and dual memristor.

PloS one
Artificial neurons with bio-inspired firing patterns have the potential to significantly improve the performance of neural network computing. The most significant component of an artificial neuron circuit is a large amount of energy consumption. Rece...

Latent circuit inference from heterogeneous neural responses during cognitive tasks.

Nature neuroscience
Higher cortical areas carry a wide range of sensory, cognitive and motor signals mixed in heterogeneous responses of single neurons tuned to multiple task variables. Dimensionality reduction methods that rely on correlations between neural activity a...

Bio-plausible reconfigurable spiking neuron for neuromorphic computing.

Science advances
Biological neurons use diverse temporal expressions of spikes to achieve efficient communication and modulation of neural activities. Nonetheless, existing neuromorphic computing systems mainly use simplified neuron models with limited spiking behavi...

Hybrid neural networks for continual learning inspired by corticohippocampal circuits.

Nature communications
Current artificial systems suffer from catastrophic forgetting during continual learning, a limitation absent in biological systems. Biological mechanisms leverage the dual representation of specific and generalized memories within corticohippocampal...

Temporal pavlovian conditioning of a model spiking neural network for discrimination sequences of short time intervals.

Journal of computational neuroscience
The brain's ability to learn and distinguish rapid sequences of events is essential for timing-dependent tasks, such as those in sports and music. However, the mechanisms underlying this ability remain an active area of research. Here, we present a P...

Spatio-temporal transformers for decoding neural movement control.

Journal of neural engineering
. Deep learning tools applied to high-resolution neurophysiological data have significantly progressed, offering enhanced decoding, real-time processing, and readability for practical applications. However, the design of artificial neural networks to...