AIMC Topic: Neurons

Clear Filters Showing 41 to 50 of 1362 articles

Unveiling CNS cell morphology with deep learning: A gateway to anti-inflammatory compound screening.

PloS one
Deciphering the complex relationships between cellular morphology and phenotypic manifestations is crucial for understanding cell behavior, particularly in the context of neuropathological states. Despite its importance, the application of advanced i...

Sparse connectivity enables efficient information processing in cortex-like artificial neural networks.

Frontiers in neural circuits
Neurons in cortical networks are very sparsely connected; even neurons whose axons and dendrites overlap are highly unlikely to form a synaptic connection. What is the relevance of such sparse connectivity for a network's function? Surprisingly, it h...

Interpretable deep learning for deconvolutional analysis of neural signals.

Neuron
The widespread adoption of deep learning to model neural activity often relies on "black-box" approaches that lack an interpretable connection between neural activity and network parameters. Here, we propose using algorithm unrolling, a method for in...

FPGA implementation of a complete digital spiking silicon neuron for circuit design and network approach.

Scientific reports
When attempting to replicate the same biological spiking neuron model actions of the human brain, the spiking neuron model methodology and hardware realization design for the nervous system of the brain are crucial considerations. This work provides ...

Structure of activity in multiregion recurrent neural networks.

Proceedings of the National Academy of Sciences of the United States of America
Neural circuits comprise multiple interconnected regions, each with complex dynamics. The interplay between local and global activity is thought to underlie computational flexibility, yet the structure of multiregion neural activity and its origins i...

A general framework for interpretable neural learning based on local information-theoretic goal functions.

Proceedings of the National Academy of Sciences of the United States of America
Despite the impressive performance of biological and artificial networks, an intuitive understanding of how their local learning dynamics contribute to network-level task solutions remains a challenge to this date. Efforts to bring learning to a more...

A deep learning framework for automated and generalized synaptic event analysis.

eLife
Quantitative information about synaptic transmission is key to our understanding of neural function. Spontaneously occurring synaptic events carry fundamental information about synaptic function and plasticity. However, their stochastic nature and lo...

Temporal Contrastive Learning through implicit non-equilibrium memory.

Nature communications
The backpropagation method has enabled transformative uses of neural networks. Alternatively, for energy-based models, local learning methods involving only nearby neurons offer benefits in terms of decentralized training, and allow for the possibili...

A deep learning strategy to identify cell types across species from high-density extracellular recordings.

Cell
High-density probes allow electrophysiological recordings from many neurons simultaneously across entire brain circuits but fail to reveal cell type. Here, we develop a strategy to identify cell types from extracellular recordings in awake animals an...

Adaptive Synaptic Scaling in Spiking Networks for Continual Learning and Enhanced Robustness.

IEEE transactions on neural networks and learning systems
Synaptic plasticity plays a critical role in the expression power of brain neural networks. Among diverse plasticity rules, synaptic scaling presents indispensable effects on homeostasis maintenance and synaptic strength regulation. In the current mo...