AIMC Topic: Nutrition Surveys

Clear Filters Showing 61 to 70 of 199 articles

The association of lifestyle with cardiovascular and all-cause mortality based on machine learning: a prospective study from the NHANES.

BMC public health
BACKGROUND: Lifestyle and cardiovascular mortality and all-cause mortality have been exhaustively explored by traditional methods, but the advantages of machine learning (ML) over traditional methods may lead to different or more precise conclusions....

Development and evaluation of interpretable machine learning regressors for predicting femoral neck bone mineral density in elderly men using NHANES data.

Biomolecules & biomedicine
Osteoporotic femoral neck fractures (OFNFs) pose a significant orthopedic challenge in the elderly population, accounting for up to 40% of all osteoporotic fractures and leading to considerable health deterioration and increased mortality. In address...

Risk prediction model of cognitive performance in older people with cardiovascular diseases: a study of the National Health and Nutrition Examination Survey database.

Frontiers in public health
BACKGROUND AND AIM: Changes in cognitive function are commonly associated with aging in patients with cardiovascular diseases. The objective of this research was to construct and validate a nomogram-based predictive model for the identification of co...

Exploring the triglyceride-glucose index's role in depression and cognitive dysfunction: Evidence from NHANES with machine learning support.

Journal of affective disorders
BACKGROUND: Depression and cognitive impairments are prevalent among older adults, with evidence suggesting potential links to obesity and lipid metabolism disturbances. This study investigates the relationships between the triglyceride-glucose (TyG)...

Machine learning in public health informatics: Evidence that complex sampling structures may not be needed for prediction models with imbalanced outcomes.

Annals of epidemiology
PURPOSE: The objective of this study is to investigate the predictive ability of machine learning models for imbalanced outcomes from national survey data without the use of sampling weights.

Blood metal levels predict digestive tract cancer risk using machine learning in a U.S. cohort.

Scientific reports
BACKGROUND: Environmental metal exposure has been implicated in the development of digestive tract cancers, although the specific associations remain poorly defined. This study aimed to investigate the relationship between blood metal levels and the ...

Multimodal machine learning for analysing multifactorial causes of disease-The case of childhood overweight and obesity in Mexico.

Frontiers in public health
BACKGROUND: Mexico has one of the highest global incidences of paediatric overweight and obesity. Public health interventions have shown only moderate success, possibly from relying on knowledge extracted using limited types of statistical data analy...

Application of machine learning algorithms in an epidemiologic study of mortality.

Annals of epidemiology
PURPOSE: Epidemiologic studies are important in assessing risk factors of mortality. Machine learning (ML) is efficient in analyzing multidimensional data to unravel dependencies between risk factors and health outcomes.

Estimating cardiovascular mortality in patients with hypertension using machine learning: The role of depression classification based on lifestyle and physical activity.

Journal of psychosomatic research
PURPOSE: This study aims to harness machine learning techniques, particularly the Random Survival Forest (RSF) model, to assess the impact of depression on cardiovascular disease (CVD) mortality among hypertensive patients. A key objective is to eluc...

Nonlinear relationship between serum Klotho and chronic kidney disease in US adults with metabolic syndrome.

Frontiers in endocrinology
BACKGROUND: Current evidence regarding the effects of serum Klotho among patients with metabolic syndrome (MetS) is scarce. This study explored the relationship between serum Klotho levels and the odds of chronic kidney disease (CKD) in middle-aged a...