AIMC Topic: Polymorphism, Single Nucleotide

Clear Filters Showing 181 to 190 of 397 articles

Deep learning versus parametric and ensemble methods for genomic prediction of complex phenotypes.

Genetics, selection, evolution : GSE
BACKGROUND: Transforming large amounts of genomic data into valuable knowledge for predicting complex traits has been an important challenge for animal and plant breeders. Prediction of complex traits has not escaped the current excitement on machine...

Multimodal Data Analysis of Alzheimer's Disease Based on Clustering Evolutionary Random Forest.

IEEE journal of biomedical and health informatics
Alzheimer's disease (AD) has become a severe medical challenge. Advances in technologies produced high-dimensional data of different modalities including functional magnetic resonance imaging (fMRI) and single nucleotide polymorphism (SNP). Understan...

Improving genomic prediction accuracy for meat tenderness in Nellore cattle using artificial neural networks.

Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie
The goal of this study was to compare the predictive performance of artificial neural networks (ANNs) with Bayesian ridge regression, Bayesian Lasso, Bayes A, Bayes B and Bayes Cπ in estimating genomic breeding values for meat tenderness in Nellore c...

DeepWAS: Multivariate genotype-phenotype associations by directly integrating regulatory information using deep learning.

PLoS computational biology
Genome-wide association studies (GWAS) identify genetic variants associated with traits or diseases. GWAS never directly link variants to regulatory mechanisms. Instead, the functional annotation of variants is typically inferred by post hoc analyses...

Deep learning models predict regulatory variants in pancreatic islets and refine type 2 diabetes association signals.

eLife
Genome-wide association analyses have uncovered multiple genomic regions associated with T2D, but identification of the causal variants at these remains a challenge. There is growing interest in the potential of deep learning models - which predict e...

Single-cell ATAC-Seq in human pancreatic islets and deep learning upscaling of rare cells reveals cell-specific type 2 diabetes regulatory signatures.

Molecular metabolism
OBJECTIVE: Type 2 diabetes (T2D) is a complex disease characterized by pancreatic islet dysfunction, insulin resistance, and disruption of blood glucose levels. Genome-wide association studies (GWAS) have identified > 400 independent signals that enc...

Machine learning approach to single nucleotide polymorphism-based asthma prediction.

PloS one
Machine learning (ML) is poised as a transformational approach uniquely positioned to discover the hidden biological interactions for better prediction and diagnosis of complex diseases. In this work, we integrated ML-based models for feature selecti...

TSLRF: Two-Stage Algorithm Based on Least Angle Regression and Random Forest in genome-wide association studies.

Scientific reports
One of the most important tasks in genome-wide association analysis (GWAS) is the detection of single-nucleotide polymorphisms (SNPs) which are related to target traits. With the development of sequencing technology, traditional statistical methods a...