AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Prospective Studies

Showing 301 to 310 of 2216 articles

Clear Filters

Machine Learning Model Predicts Postoperative Outcomes in Chronic Rhinosinusitis With Nasal Polyps.

Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery
OBJECTIVE: Evaluating the possibility of predicting chronic rhinosinusitis with nasal polyps (CRSwNP) disease course using Artificial Intelligence.

Development and Validation of Prediction Models for Incident Reversible Cognitive Frailty Based on Social-Ecological Predictors Using Generalized Linear Mixed Model and Machine Learning Algorithms: A Prospective Cohort Study.

Journal of applied gerontology : the official journal of the Southern Gerontological Society
This study aimed to develop and validate prediction models for incident reversible cognitive frailty (RCF) based on social-ecological predictors. Older adults aged ≥60 years from China Health and Retirement Longitudinal Study (CHARLS) 2011-2013 surve...

A Deep Learning-Based Framework for Predicting Intracerebral Hematoma Expansion Using Head Non-contrast CT Scan.

Academic radiology
RATIONALE AND OBJECTIVES: Hematoma expansion (HE) in intracerebral hemorrhage (ICH) is a critical factor affecting patient outcomes, yet effective clinical tools for predicting HE are currently lacking. We aim to develop a fully automated framework b...

Identifying psychological predictors of SARS-CoV-2 vaccination: A machine learning study.

Vaccine
BACKGROUND: Major barriers to addressing SARS-CoV-2 vaccine hesitancy include limited knowledge of what causes delay/refusal of SARS-CoV-2 vaccination and limited ability to predict who will remain unvaccinated over significant time periods despite v...

Automatic diagnosis for adenomyosis in ultrasound images by deep neural networks.

European journal of obstetrics, gynecology, and reproductive biology
OBJECTIVE: To present a new noninvasive technique for automatic diagnosis of adenomyosis, using a novel end-to-end unified network framework based on transformer networks.

A novel assessment of whole-mount Gleason grading in prostate cancer to identify candidates for radical prostatectomy: a machine learning-based multiomics study.

Theranostics
: This study aims to assess whole-mount Gleason grading (GG) in prostate cancer (PCa) accurately using a multiomics machine learning (ML) model and to compare its performance with biopsy-proven GG (bxGG) assessment. : A total of 146 patients with PCa...

Artificial T1-Weighted Postcontrast Brain MRI: A Deep Learning Method for Contrast Signal Extraction.

Investigative radiology
OBJECTIVES: Reducing gadolinium-based contrast agents to lower costs, the environmental impact of gadolinium-containing wastewater, and patient exposure is still an unresolved issue. Published methods have never been compared. The purpose of this stu...

Automated detection of tonic seizures using wearable movement sensor and artificial neural network.

Epilepsia
Although several validated wearable devices are available for detection of generalized tonic-clonic seizures, automated detection of tonic seizures is still a challenge. In this phase 1 study, we report development and validation of an artificial neu...

Computer-aided prognosis of tuberculous meningitis combining imaging and non-imaging data.

Scientific reports
Tuberculous meningitis (TBM) is the most lethal form of tuberculosis. Clinical features, such as coma, can predict death, but they are insufficient for the accurate prognosis of other outcomes, especially when impacted by co-morbidities such as HIV i...