AIMC Topic: Prostate

Clear Filters Showing 21 to 30 of 614 articles

Deep Learning for Predicting Difficulty in Radical Prostatectomy: A Novel Evaluation Scheme.

Urology
OBJECTIVE: To explore new metrics for assessing radical prostatectomy difficulty through a two-stage deep learning method from preoperative magnetic resonance imaging.

Clinical Application of Deep Learning-Assisted Needles Reconstruction in Prostate Ultrasound Brachytherapy.

International journal of radiation oncology, biology, physics
PURPOSE: High dose rate (HDR) prostate brachytherapy (BT) procedure requires image-guided needle insertion. Given that general anesthesia is often employed during the procedure, minimizing overall planning time is crucial. In this study, we explore t...

BMA-Net: A 3D bidirectional multi-scale feature aggregation network for prostate region segmentation.

Computer methods and programs in biomedicine
BACKGROUND AND OBJECTIVE: Accurate segmentation of the prostate region in magnetic resonance imaging (MRI) is crucial for prostate-related diagnoses. Recent studies have incorporated Transformers into prostate region segmentation to better capture lo...

Using XBGoost, an interpretable machine learning model, for diagnosing prostate cancer in patients with PSA < 20 ng/ml based on the PSAMR indicator.

Scientific reports
To create a diagnostic tool before biopsy for patients with prostate-specific antigen (PSA) levels < 20 ng/ml to minimize prostate biopsy-related discomfort and risks. Data from 655 patients who underwent transperineal prostate biopsy at the First Af...

Unsupervised self-organising map classification of Raman spectra from prostate cell lines uncovers substratified prostate cancer disease states.

Scientific reports
Prostate cancer is a disease which poses an interesting clinical question: Should it be treated? Only a small subset of prostate cancers are aggressive and require removal and treatment to prevent metastatic spread. However, conventional diagnostics ...

Stimulated Raman Histology and Artificial Intelligence Provide Near Real-Time Interpretation of Radical Prostatectomy Surgical Margins.

The Journal of urology
PURPOSE: Balancing surgical margins and functional outcomes is crucial during radical prostatectomy for prostate cancer. Stimulated Raman histology (SRH) is a novel, real-time imaging technique that provides histologic images of fresh, unprocessed, a...

Enhancing thin slice 3D T2-weighted prostate MRI with super-resolution deep learning reconstruction: Impact on image quality and PI-RADS assessment.

Magnetic resonance imaging
PURPOSES: This study aimed to assess the effectiveness of Super-Resolution Deep Learning Reconstruction (SR-DLR) -a deep learning-based technique that enhances image resolution and quality during MRI reconstruction- in improving the image quality of ...

Deep learning-accelerated T2WI of the prostate for transition zone lesion evaluation and extraprostatic extension assessment.

Scientific reports
This bicenter retrospective analysis included 162 patients who had undergone prostate biopsy following prebiopsy MRI, excluding those with PCa identified only in the peripheral zone (PZ). DLR T2WI achieved a 69% reduction in scan time relative to TSE...

Comparison of MRI artificial intelligence-guided cognitive fusion-targeted biopsy versus routine cognitive fusion-targeted prostate biopsy in prostate cancer diagnosis: a randomized controlled trial.

BMC medicine
BACKGROUND: Cognitive fusion MRI-guided targeted biopsy (cTB) has been widely used in the diagnosis of prostate cancer (PCa). However, cTB relies heavily on the operator's experience and confidence in MRI readings. Our objective was to compare the ca...