AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Protein Interaction Maps

Showing 91 to 100 of 340 articles

Clear Filters

UPLC-Q-TOF-MS/MS combined with machine learning methods for screening quality indicators of Hypericum perforatum L.

Journal of pharmaceutical and biomedical analysis
Hypericum perforatum L. (HPL), also known as St. John's wort, is one of the extensively researched domestically and internationally as a medicinal plant. In this study, non-targeted metabolomics combined with machine learning methods were used to ide...

A comprehensive analysis of m6A/m7G/m5C/m1A-related gene expression and immune infiltration in liver ischemia-reperfusion injury by integrating bioinformatics and machine learning algorithms.

European journal of medical research
BACKGROUND: Liver ischemia-reperfusion injury (LIRI) is closely associated with immune infiltration, which commonly occurs after liver surgery, especially liver transplantation. Therefore, it is crucial to identify the genes responsible for LIRI and ...

ACDMBI: A deep learning model based on community division and multi-source biological information fusion predicts essential proteins.

Computational biology and chemistry
Accurately identifying essential proteins is vital for drug research and disease diagnosis. Traditional centrality methods and machine learning approaches often face challenges in accurately discerning essential proteins, primarily relying on informa...

Apoptosis and NETotic cell death affect diabetic nephropathy independently: An study integrative study encompassing bioinformatics, machine learning, and experimental validation.

Genomics
OBJECTIVE: Although programmed cell death (PCD) and diabetic nephropathy (DN) are intrinsically conneted, the interplay among various PCD forms remains elusive. In this study, We aimed at identifying independently DN-associated PCD pathways and bioma...

Deep learning-based pathway-centric approach to characterize recurrent hepatocellular carcinoma after liver transplantation.

Human genomics
BACKGROUND: Liver transplantation (LT) is offered as a cure for Hepatocellular carcinoma (HCC), however 15-20% develop recurrence post-transplant which tends to be aggressive. In this study, we examined the transcriptome profiles of patients with rec...

Identification of shared gene signatures and pathways for diagnosing osteoporosis with sarcopenia through integrated bioinformatics analysis and machine learning.

BMC musculoskeletal disorders
BACKGROUND: Prior studies have suggested a potential relationship between osteoporosis and sarcopenia, both of which can present symptoms of compromised mobility. Additionally, fractures among the elderly are often considered a common outcome of both...

DSSGNN-PPI: A Protein-Protein Interactions prediction model based on Double Structure and Sequence graph neural networks.

Computers in biology and medicine
The process of experimentally confirming complex interaction networks among proteins is time-consuming and laborious. This study aims to address Protein-Protein Interactions (PPIs) prediction based on graph neural networks (GNN). A novel multilevel p...

Protein-Protein Interfaces: A Graph Neural Network Approach.

International journal of molecular sciences
Protein-protein interactions (PPIs) are fundamental processes governing cellular functions, crucial for understanding biological systems at the molecular level. Compared to experimental methods for PPI prediction and site identification, computationa...

Prediction of Protein-Protein Interactions Based on Integrating Deep Learning and Feature Fusion.

International journal of molecular sciences
Understanding protein-protein interactions (PPIs) helps to identify protein functions and develop other important applications such as drug preparation and protein-disease relationship identification. Deep-learning-based approaches are being intensel...