AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Quantitative Structure-Activity Relationship

Showing 221 to 230 of 477 articles

Clear Filters

Cautionary Guidelines for Machine Learning Studies with Combinatorial Datasets.

ACS combinatorial science
Regression modeling is becoming increasingly prevalent in organic chemistry as a tool for reaction outcome prediction and mechanistic interrogation. Frequently, to acquire the requisite amount of data for such studies, researchers employ combinatoria...

A Recurrent Neural Network model to predict blood-brain barrier permeability.

Computational biology and chemistry
The rapid development of computational methods and the increasing volume of chemical and biological data have contributed to an immense growth in chemical research. This field of study is known as "chemoinformatics," which is a discipline that uses m...

Discovery of Dual FGFR4 and EGFR Inhibitors by Machine Learning and Biological Evaluation.

Journal of chemical information and modeling
Kinase inhibitors are widely used in antitumor research, but there are still many problems such as drug resistance and off-target toxicity. A more suitable solution is to design a multitarget inhibitor with certain selectivity. Herein, computational ...

Application of artificial neural networks to prediction of new substances with antimicrobial activity against Escherichia coli.

Journal of applied microbiology
AIMS: This article presents models of artificial neural networks (ANN) employed to predict the biological activity of chemical compounds based of their structure. Regression and classification models were designed to determine antimicrobial propertie...

In vitro and in silico genetic toxicity screening of flavor compounds and other ingredients in tobacco products with emphasis on ENDS.

Journal of applied toxicology : JAT
Electronic nicotine delivery systems (ENDS) are regulated tobacco products and often contain flavor compounds. Given the concern of increased use and the appeal of ENDS by young people, evaluating the potential of flavors to induce DNA damage is impo...

Quantitative structure-property relationship of distribution coefficients of organic compounds.

SAR and QSAR in environmental research
The -octanol/buffer solution distribution coefficient (or -octanol/water partition coefficient) is of critical importance for measuring lipophilicity of drug candidates. After 4885 molecular descriptor generation, 15 molecular descriptors were select...

Machine Estimation of Drug Melting Properties and Influence on Solubility Prediction.

Molecular pharmaceutics
There has been much recent interest in machine learning (ML) and molecular quantitative structure property relationships (QSPR). The present research evaluated modern ML-based methods implemented in commercial software (COSMOquick and Molecular Model...

Insight into potent leads for alzheimer's disease by using several artificial intelligence algorithms.

Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Several proteins including S-nitrosoglutathione reductase (GSNOR), complement Factor D, complement 3b (C3b) and Protein Kinase R-like Endoplasmic Reticulum Kinase (PERK), have been demonstrated to be involved in pathogenesis pathways for Alzheimer's ...

Prediction of Soil Adsorption Coefficient in Pesticides Using Physicochemical Properties and Molecular Descriptors by Machine Learning Models.

Environmental toxicology and chemistry
The soil adsorption coefficient (K ) plays an important role in environmental risk assessment of pesticide registration. Based on this risk assessment, applied and registered pesticides can be allowed in the European Union. Almost 1 yr is required to...

Development of a QSAR model to predict hepatic steatosis using freely available machine learning tools.

Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association
There are various types of hepatic steatosis of which non-alcoholic fatty liver disease, which may be caused by exposure to chemicals and environmental pollutants is the most prevalent, representing a potential major health risk. QSAR modelling has t...