AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiation Dosage

Showing 61 to 70 of 499 articles

Clear Filters

Benchmarking deep learning-based low-dose CT image denoising algorithms.

Medical physics
BACKGROUND: Long-lasting efforts have been made to reduce radiation dose and thus the potential radiation risk to the patient for computed tomography (CT) acquisitions without severe deterioration of image quality. To this end, various techniques hav...

Pulmonary nodule visualization and evaluation of AI-based detection at various ultra-low-dose levels using photon-counting detector CT.

Acta radiologica (Stockholm, Sweden : 1987)
BACKGROUND: Radiation dose should be as low as reasonably achievable. With the invention of photon-counting detector computed tomography (PCD-CT), the radiation dose may be considerably reduced.

Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet.

Physics in medicine and biology
To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume (HRCTV) and organ at risk (OAR) in high-dose-rate brachyther...

Low-dose computed tomography perceptual image quality assessment.

Medical image analysis
In computed tomography (CT) imaging, optimizing the balance between radiation dose and image quality is crucial due to the potentially harmful effects of radiation on patients. Although subjective assessments by radiologists are considered the gold s...

Deep learning-based techniques for estimating high-quality full-dose positron emission tomography images from low-dose scans: a systematic review.

BMC medical imaging
This systematic review aimed to evaluate the potential of deep learning algorithms for converting low-dose Positron Emission Tomography (PET) images to full-dose PET images in different body regions. A total of 55 articles published between 2017 and ...

A Novel Network for Low-Dose CT Denoising Based on Dual-Branch Structure and Multi-Scale Residual Attention.

Journal of imaging informatics in medicine
Deep learning-based denoising of low-dose medical CT images has received great attention both from academic researchers and physicians in recent years, and has shown important application value in clinical practice. In this work, a novel two-branch a...

Unsupervised and Self-supervised Learning in Low-Dose Computed Tomography Denoising: Insights from Training Strategies.

Journal of imaging informatics in medicine
In recent years, X-ray low-dose computed tomography (LDCT) has garnered widespread attention due to its significant reduction in the risk of patient radiation exposure. However, LDCT images often contain a substantial amount of noises, adversely affe...

Artificial intelligence assisted automatic screening of opportunistic osteoporosis in computed tomography images from different scanners.

European radiology
OBJECTIVES: It is feasible to evaluate bone mineral density (BMD) and detect osteoporosis through an artificial intelligence (AI)-assisted system by using quantitative computed tomography (QCT) as a reference without additional radiation exposure or ...

Determination of neutron spectrum based on artificial neural network using liquid scintillation detector EJ-301.

Radiation protection dosimetry
This paper focuses on the neutron spectrum measurement using a liquid scintillation detector, where the neutron spectrum could be identified and unfolded from the light output distribution of the EJ-301 liquid scintillation detector through a linear ...