AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 101 to 110 of 1260 articles

A novel hybrid deep learning framework based on biplanar X-ray radiography images for bone density prediction and classification.

Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
UNLABELLED: This study utilized deep learning for bone mineral density (BMD) prediction and classification using biplanar X-ray radiography (BPX) images from Huashan Hospital Medical Checkup Center. Results showed high accuracy and strong correlation...

Generative Adversarial Networks With Radiomics Supervision for Lung Lesion Generation.

IEEE transactions on bio-medical engineering
Data-driven methods for lesion generation are quickly emerging due to the need for realistic imaging targets for image quality assessment and virtual clinical trials. We proposed a generative adversarial network (GAN) architecture for conditional gen...

A novel deep learning-based pipeline architecture for pulp stone detection on panoramic radiographs.

Oral radiology
OBJECTIVES: Pulp stones are ectopic calcifications located in pulp tissue. The aim of this study is to introduce a novel method for detecting pulp stones on panoramic radiography images using a deep learning-based two-stage pipeline architecture.

Application of deep learning in automated localization and interpretation of coronary artery calcification in oncological PET/CT scans.

The international journal of cardiovascular imaging
Coronary artery calcification (CAC) is a key marker of coronary artery disease (CAD) but is often underreported in cancer patients undergoing non-gated CT or PET/CT scans. Traditional CAC assessment requires gated CT scans, leading to increased radia...

End-to-end deep-learning model for the detection of coronary artery stenosis on coronary CT images.

Open heart
PURPOSE: We examined whether end-to-end deep-learning models could detect moderate (≥50%) or severe (≥70%) stenosis in the left anterior descending artery (LAD), right coronary artery (RCA) or left circumflex artery (LCX) in iodine contrast-enhanced ...

Patch-based feature mapping with generative adversarial networks for auxiliary hip fracture detection.

Computers in biology and medicine
BACKGROUND: Hip fractures are a significant public health issue, particularly among the elderly population. Pelvic radiographs (PXRs) play a crucial role in diagnosing hip fractures and are commonly used for their evaluation. Previous research has de...

Automated classification of coronary LEsions fRom coronary computed Tomography angiography scans with an updated deep learning model: ALERT study.

European radiology
OBJECTIVES: The use of deep learning models for quantitative measurements on coronary computed tomography angiography (CCTA) may reduce inter-reader variability and increase efficiency in clinical reporting. This study aimed to investigate the diagno...

Interpretable CT Radiomics-based Machine Learning Model for Preoperative Prediction of Ki-67 Expression in Clear Cell Renal Cell Carcinoma.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and externally validate interpretable CT radiomics-based machine learning (ML) models for preoperative Ki-67 expression prediction in clear cell renal cell carcinoma (ccRCC).