AIMC Topic: Radiographic Image Interpretation, Computer-Assisted

Clear Filters Showing 31 to 40 of 1289 articles

Deep Learning-enhanced Opportunistic Osteoporosis Screening in Ultralow-Voltage (80 kV) Chest CT: A Preliminary Study.

Academic radiology
RATIONALE AND OBJECTIVES: To explore the feasibility of deep learning (DL)-enhanced, fully automated bone mineral density (BMD) measurement using the ultralow-voltage 80 kV chest CT scans performed for lung cancer screening.

A deep learning algorithm for automated adrenal gland segmentation on non-contrast CT images.

BMC medical imaging
BACKGROUND: The adrenal glands are small retroperitoneal organs, few reference standards exist for adrenal CT measurements in clinical practice. This study aims to develop a deep learning (DL) model for automated adrenal gland segmentation on non-con...

Impact of Photon-counting Detector Computed Tomography on a Quantitative Interstitial Lung Disease Machine Learning Model.

Journal of thoracic imaging
PURPOSE: Compare the impact of photon-counting detector computed tomography (PCD-CT) to conventional CT on an interstitial lung disease (ILD) quantitative machine learning (QML) model.

Tumor grade-titude: XGBoost radiomics paves the way for RCC classification.

European journal of radiology
This study aimed to develop and evaluate a non-invasive XGBoost-based machine learning model using radiomic features extracted from pre-treatment CT images to differentiate grade 4 renal cell carcinoma (RCC) from lower-grade tumours. A total of 102 R...

Application of deep learning reconstruction combined with time-resolved post-processing method to improve image quality in CTA derived from low-dose cerebral CT perfusion data.

BMC medical imaging
BACKGROUND: To assess the effect of the combination of deep learning reconstruction (DLR) and time-resolved maximum intensity projection (tMIP) or time-resolved average (tAve) post-processing method on image quality of CTA derived from low-dose cereb...

Application and optimization of the U-Net++ model for cerebral artery segmentation based on computed tomographic angiography images.

European journal of radiology
Accurate segmentation of cerebral arteries on computed tomography angiography (CTA) images is essential for the diagnosis and management of cerebrovascular diseases, including ischemic stroke. This study implemented a deep learning-based U-Net++ mode...

Reduction of radiation exposure in chest radiography using deep learning-based noise reduction processing: A phantom and retrospective clinical study.

Radiography (London, England : 1995)
INTRODUCTION: Intelligent noise reduction (INR), a deep learning-based noise reduction developed by Canon, is used in planar radiography to improve image quality and reduce patient exposure dose. This study aimed to evaluate the reduction of patient ...

Impact of CT reconstruction algorithms on pericoronary and epicardial adipose tissue attenuation.

European journal of radiology
OBJECTIVE: This study aims to investigate the impact of adaptive statistical iterative reconstruction-Veo (ASIR-V) and deep learning image reconstruction (DLIR) algorithms on the quantification of pericoronary adipose tissue (PCAT) and epicardial adi...