AIMC Topic: Radiography, Thoracic

Clear Filters Showing 401 to 410 of 591 articles

Recurrent attention network for false positive reduction in the detection of pulmonary nodules in thoracic CT scans.

Medical physics
PURPOSE: Multiview two-dimensional (2D) convolutional neural networks (CNNs) and three-dimensional (3D) CNNs have been successfully used for analyzing volumetric data in many state-of-the-art medical imaging applications. We propose an alternative mo...

Impact of hybrid supervision approaches on the performance of artificial intelligence for the classification of chest radiographs.

Computers in biology and medicine
PURPOSE: To evaluate the impact of different supervision regimens on the training of artificial intelligence (AI) in the classification of chest radiographs as normal or abnormal in a moderately sized cohort of individuals more likely to be outpatien...

Deep learning algorithm for surveillance of pneumothorax after lung biopsy: a multicenter diagnostic cohort study.

European radiology
OBJECTIVES: Pneumothorax is the most common and potentially life-threatening complication arising from percutaneous lung biopsy. We evaluated the performance of a deep learning algorithm for detection of post-biopsy pneumothorax in chest radiographs ...

Calculating the target exposure index using a deep convolutional neural network and a rule base.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The objective of this study is to determine the quality of chest X-ray images using a deep convolutional neural network (DCNN) and a rule base without performing any visual assessment. A method is proposed for determining the minimum diagnos...

Imaging research in fibrotic lung disease; applying deep learning to unsolved problems.

The Lancet. Respiratory medicine
Over the past decade, there has been a groundswell of research interest in computer-based methods for objectively quantifying fibrotic lung disease on high resolution CT of the chest. In the past 5 years, the arrival of deep learning-based image anal...

CT-based deep learning model to differentiate invasive pulmonary adenocarcinomas appearing as subsolid nodules among surgical candidates: comparison of the diagnostic performance with a size-based logistic model and radiologists.

European radiology
OBJECTIVES: To evaluate the deep learning models for differentiating invasive pulmonary adenocarcinomas (IACs) among subsolid nodules (SSNs) considered for resection in a retrospective diagnostic cohort in comparison with a size-based logistic model ...

Image Quality and Lesion Detection on Deep Learning Reconstruction and Iterative Reconstruction of Submillisievert Chest and Abdominal CT.

AJR. American journal of roentgenology
The objective of this study was to compare image quality and clinically significant lesion detection on deep learning reconstruction (DLR) and iterative reconstruction (IR) images of submillisievert chest and abdominopelvic CT. Our prospective mult...

Label Co-Occurrence Learning With Graph Convolutional Networks for Multi-Label Chest X-Ray Image Classification.

IEEE journal of biomedical and health informatics
Existing multi-label medical image learning tasks generally contain rich relationship information among pathologies such as label co-occurrence and interdependency, which is of great importance for assisting in clinical diagnosis and can be represent...

Deep learning, computer-aided radiography reading for tuberculosis: a diagnostic accuracy study from a tertiary hospital in India.

Scientific reports
In general, chest radiographs (CXR) have high sensitivity and moderate specificity for active pulmonary tuberculosis (PTB) screening when interpreted by human readers. However, they are challenging to scale due to hardware costs and the dearth of pro...

Test-retest reproducibility of a deep learning-based automatic detection algorithm for the chest radiograph.

European radiology
OBJECTIVES: To perform test-retest reproducibility analyses for deep learning-based automatic detection algorithm (DLAD) using two stationary chest radiographs (CRs) with short-term intervals, to analyze influential factors on test-retest variations,...