AIMC Topic: Radiosurgery

Clear Filters Showing 51 to 60 of 154 articles

Dosimetric Study of Deep Learning-Guided ITV Prediction in Cone-beam CT for Lung Stereotactic Body Radiotherapy.

Frontiers in public health
PURPOSE: The purpose of this study was to evaluate the accuracy of a lung stereotactic body radiotherapy (SBRT) treatment plan with the target of a newly predicted internal target volume (ITV) and the feasibility of its clinical application. ITV was ...

Using deep learning models to analyze the cerebral edema complication caused by radiotherapy in patients with intracranial tumor.

Scientific reports
Using deep learning models to analyze patients with intracranial tumors, to study the image segmentation and standard results by clinical depiction complications of cerebral edema after receiving radiotherapy. In this study, patients with intracrania...

Deep-learning and radiomics ensemble classifier for false positive reduction in brain metastases segmentation.

Physics in medicine and biology
Stereotactic radiosurgery (SRS) is now the standard of care for brain metastases (BMs) patients. The SRS treatment planning process requires precise target delineation, which in clinical workflow for patients with multiple (>4) BMs (mBMs) could becom...

Automated segmentation of multiparametric magnetic resonance images for cerebral AVM radiosurgery planning: a deep learning approach.

Scientific reports
Stereotactic radiosurgery planning for cerebral arteriovenous malformations (AVM) is complicated by the variability in appearance of an AVM nidus across different imaging modalities. We developed a deep learning approach to automatically segment cere...

Integration of Deep Learning Radiomics and Counts of Circulating Tumor Cells Improves Prediction of Outcomes of Early Stage NSCLC Patients Treated With Stereotactic Body Radiation Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: We develop a deep learning (DL) radiomics model and integrate it with circulating tumor cell (CTC) counts as a clinically useful prognostic marker for predicting recurrence outcomes of early-stage (ES) non-small cell lung cancer (NSCLC) pati...

A priori prediction of local failure in brain metastasis after hypo-fractionated stereotactic radiotherapy using quantitative MRI and machine learning.

Scientific reports
This study investigated the effectiveness of pre-treatment quantitative MRI and clinical features along with machine learning techniques to predict local failure in patients with brain metastasis treated with hypo-fractionated stereotactic radiation ...

Development of a tracking error prediction system for the CyberKnife Synchrony Respiratory Tracking System with use of support vector regression.

Medical & biological engineering & computing
PURPOSE: The accuracy of the CyberKnife Synchrony Respiratory Tracking System is dependent on the breathing pattern of a patient. Therefore, the tracking error in each patient must be determined. Support vector regression (SVR) can be used to easily ...

A new prognostic score for predicting survival in patients treated with robotic stereotactic radiotherapy for brain metastases.

Scientific reports
The study aimed to analyze potential prognostic factors in patients treated with robotic radiosurgery for brain metastases irrespective of primary tumor location and create a simple prognostic score that can be used without a full diagnostic workup. ...

Combining computed tomography and biologically effective dose in radiomics and deep learning improves prediction of tumor response to robotic lung stereotactic body radiation therapy.

Medical physics
PURPOSE: The aim of this study is to improve the performance of machine learning (ML) models in predicting response of non-small cell lung cancer (NSCLC) to stereotactic body radiation therapy (SBRT) by integrating image features from pre-treatment c...

Computation of epistemic uncertainty due to limited data samples in small field dosimetry using Fuzzy Set Theory.

The British journal of radiology
OBJECTIVE: To estimate the epistemic (or fuzzy) uncertainty, arising due to limited data samples in the measurement of the output factors (OFs) of the small fields using Fuzzy Set Theory (FST).