AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy Dosage

Showing 61 to 70 of 461 articles

Clear Filters

Attention 3D UNET for dose distribution prediction of high-dose-rate brachytherapy of cervical cancer: Intracavitary applicators.

Journal of applied clinical medical physics
BACKGROUND: Formulating a clinically acceptable plan within the time-constrained clinical setting of brachytherapy poses challenges to clinicians. Deep learning based dose prediction methods have shown favorable solutions for enhancing efficiency, bu...

Deep learning prediction of scenario doses for direct plan robustness evaluations in IMPT for head-and-neck.

Physics in medicine and biology
. Intensity modulated proton therapy (IMPT) is susceptible to uncertainties in patient setup and proton range. Robust optimization is employed in IMPT treatment planning to ensure sufficient coverage of the clinical target volume (CTV) in predefined ...

Clinical commissioning and introduction of an in-house artificial intelligence (AI) platform for automated head and neck intensity modulated radiation therapy (IMRT) treatment planning.

Journal of applied clinical medical physics
BACKGROUND AND PURPOSE: To describe the clinical commissioning of an in-house artificial intelligence (AI) treatment planning platform for head-and-neck (HN) Intensity Modulated Radiation Therapy (IMRT).

Assessment of pencil beam scanning proton therapy beam delivery accuracy through machine learning and log file analysis.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: Comprehensive Quality Assurance (QA) protocols are necessary for complex beam delivery systems like Pencil Beam Scanning (PBS) proton therapy. This study focuses on automating the evaluation of beam delivery accuracy using irradiation log fi...

Clinical target volume (CTV) automatic delineation using deep learning network for cervical cancer radiotherapy: A study with external validation.

Journal of applied clinical medical physics
PURPOSE: To explore the accuracy and feasibility of a proposed deep learning (DL) algorithm for clinical target volume (CTV) delineation in cervical cancer radiotherapy and evaluate whether it can perform well in external cervical cancer and endometr...

Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy.

International journal of radiation oncology, biology, physics
PURPOSE: Magnetic resonance (MR)-guided radiation therapy enables online adaptation to address intra- and interfractional changes. To address the need of high-fidelity synthetic computed tomography (synCT) required for dose calculation, we developed ...

Development of learning-based predictive models for radiation-induced atrial fibrillation in non-small cell lung cancer patients by integrating patient-specific clinical, dosimetry, and diagnostic information.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
BACKGROUND AND PURPOSE: Radiotherapy (RT) in non-small cell lung cancer (NSCLC) can induce cardiac adverse events, including atrial fibrillation (AF), despite advanced RT. This study integrates patient-specific information to develop learning-based m...

A deep learning-informed interpretation of why and when dose metrics outside the PTV can affect the risk of distant metastasis in SBRT NSCLC patients.

Radiation oncology (London, England)
PURPOSE: Recent papers suggested a correlation between the risk of distant metastasis (DM) and dose outside the PTV, though conclusions in different publications conflicted. This study resolves these conflicts and provides a compelling explanation of...

Deep learning-based segmentation for high-dose-rate brachytherapy in cervical cancer using 3D Prompt-ResUNet.

Physics in medicine and biology
To develop and evaluate a 3D Prompt-ResUNet module that utilized the prompt-based model combined with 3D nnUNet for rapid and consistent autosegmentation of high-risk clinical target volume (HRCTV) and organ at risk (OAR) in high-dose-rate brachyther...