AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Radiotherapy, Intensity-Modulated

Showing 51 to 60 of 281 articles

Clear Filters

Deep learning for patient-specific quality assurance of volumetric modulated arc therapy: Prediction accuracy and cost-sensitive classification performance.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: To evaluate a deep learning model's performance in predicting and classifying patient-specific quality assurance (PSQA) results for volumetric modulated arc therapy (VMAT), aiming to streamline PSQA workflows and reduce the onsite measuremen...

Machine learning and deep learning prediction of patient specific quality assurance in breast IMRT radiotherapy plans using Halcyon specific complexity indices.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
INTRODUCTION: New radiotherapy machines such as Halcyon are capable of delivering dose-rate of 600 monitor-units per minute, allowing large numbers of patients treated per day. However, patient-specific quality assurance (QA) is still required, which...

Deep learning based clinical target volumes contouring for prostate cancer: Easy and efficient application.

Journal of applied clinical medical physics
BACKGROUND: Radiotherapy has been crucial in prostate cancer treatment. However, manual segmentation is labor intensive and highly variable among radiation oncologists. In this study, a deep learning based automated contouring model is constructed fo...

Deep learning architecture with shunted transformer and 3D deformable convolution for voxel-level dose prediction of head and neck tumors.

Physical and engineering sciences in medicine
Intensity-modulated radiation therapy (IMRT) has been widely used in treating head and neck tumors. However, due to the complex anatomical structures in the head and neck region, it is challenging for the plan optimizer to rapidly generate clinically...

Clinical implementation and evaluation of deep learning-assisted automatic radiotherapy treatment planning for lung cancer.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
PURPOSE: The purpose of the study is to investigate the clinical application of deep learning (DL)-assisted automatic radiotherapy planning for lung cancer.

Improving the performance of deep learning models in predicting and classifying gamma passing rates with discriminative features and a class balancing technique: a retrospective cohort study.

Radiation oncology (London, England)
BACKGROUND: The purpose of this study was to improve the deep learning (DL) model performance in predicting and classifying IMRT gamma passing rate (GPR) by using input features related to machine parameters and a class balancing technique.

Combined deep learning and radiomics in pretreatment radiation esophagitis prediction for patients with esophageal cancer underwent volumetric modulated arc therapy.

Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology
PURPOSE: To develop a combined radiomics and deep learning (DL) model in predicting radiation esophagitis (RE) of a grade ≥ 2 for patients with esophageal cancer (EC) underwent volumetric modulated arc therapy (VMAT) based on computed tomography (CT)...

Localized fine-tuning and clinical evaluation of deep-learning based auto-segmentation (DLAS) model for clinical target volume (CTV) and organs-at-risk (OAR) in rectal cancer radiotherapy.

Radiation oncology (London, England)
BACKGROUND AND PURPOSE: Various deep learning auto-segmentation (DLAS) models have been proposed, some of which have been commercialized. However, the issue of performance degradation is notable when pretrained models are deployed in the clinic. This...

Development of a risk prediction model for radiation dermatitis following proton radiotherapy in head and neck cancer using ensemble machine learning.

Radiation oncology (London, England)
PURPOSE: This study aims to develop an ensemble machine learning-based (EML-based) risk prediction model for radiation dermatitis (RD) in patients with head and neck cancer undergoing proton radiotherapy, with the goal of achieving superior predictiv...