AIMC Topic: Retrospective Studies

Clear Filters Showing 241 to 250 of 9139 articles

Development and external validation of a machine learning model to predict bronchopulmonary dysplasia using dynamic factors.

Scientific reports
We hypothesized that incorporating postnatal dynamic factors would enhance the prediction accuracy of bronchopulmonary dysplasia in preterm infants. This retrospective cohort study included neonates born before 32 weeks of gestation at Seoul National...

Identification and validation of a novel machine learning model for predicting severe pelvic endometriosis: A retrospective study.

Scientific reports
This study aimed to explore potential risk factors for severe endometriosis and to develop a model to predict the risk of severe endometriosis. A total of 308 patients with endometriosis were analyzed. Least absolute shrinkage and selection operator ...

Prediction of early recurrence in primary central nervous system lymphoma based on multimodal MRI-based radiomics: A preliminary study.

European journal of radiology
OBJECTIVES: To evaluate the role of multimodal magnetic resonance imaging radiomics features in predicting early recurrence of primary central nervous system lymphoma (PCNSL) and to investigate their correlation with patient prognosis.

Machine Learning-Based Diagnostic Prediction Model Using T1-Weighted Striatal Magnetic Resonance Imaging for Early-Stage Parkinson's Disease Detection.

Academic radiology
RATIONALE AND OBJECTIVES: Diagnosing Parkinson's disease (PD) typically relies on clinical evaluations, often detecting it in advanced stages. Recently, artificial intelligence has increasingly been applied to imaging for neurodegenerative disorders....

Artificial neural network model enhancing the accuracy of clinical evaluation for high-risk population of lymph node metastasis in non-intestinal type early gastric cancer: a multicenter real-world study in China.

International journal of surgery (London, England)
BACKGROUND: Recent years have witnessed a proliferation of studies aimed at developing clinical models capable of predicting lymph node metastasis (LNM) in early gastric cancer (EGC), yet tools for prediction grounded in the Lauren classification rem...

Updated perspectives on visceral pleural invasion in non-small cell lung cancer: A propensity score-matched analysis of the SEER database.

Current problems in cancer
BACKGROUND: Visceral pleural invasion (VPI), including PL1 (the tumor invades beyond the elastic layer) and PL2 (the tumor extends to the surface of the visceral pleura), plays a crucial role in staging Non-Small Cell Lung Cancer (NSCLC). However, th...

Diagnostic MicroRNA Signatures to Support Classification of Pulmonary Hypertension.

Circulation. Genomic and precision medicine
BACKGROUND: Patients with pulmonary hypertension (PH) are classified based on disease pathogenesis and hemodynamic drivers. Classification informs treatment. The heart failure biomarker NT-proBNP (N-terminal pro-B-type natriuretic peptide) is used to...

Integrating Machine Learning and Follow-Up Variables to Improve Early Detection of Hepatocellular Carcinoma in Tyrosinemia Type 1: A Multicenter Study.

International journal of molecular sciences
Hepatocellular carcinoma (HCC) is a major complication of tyrosinemia type 1 (HT-1), an inborn error of metabolism affecting tyrosine catabolism. The risk of HCC is higher in late diagnoses despite treatment. Alpha-fetoprotein (AFP) is widely used to...

Smart contours: deep learning-driven internal gross tumor volume delineation in non-small cell lung cancer using 4D CT maximum and average intensity projections.

Radiation oncology (London, England)
BACKGROUND: Delineating the internal gross tumor volume (IGTV) is crucial for the treatment of non-small cell lung cancer (NSCLC). Deep learning (DL) enables the automation of this process; however, current studies focus mainly on multiple phases of ...

Optimizing prediction of metastasis among colorectal cancer patients using machine learning technology.

BMC gastroenterology
BACKGROUND AND AIM: Colorectal cancer is among the most prevalent and deadliest cancers. Early prediction of metastasis in patients with colorectal cancer is crucial in preventing it from the advanced stages and enhancing the prognosis among these pa...