AIMC Topic: Retrospective Studies

Clear Filters Showing 651 to 660 of 9169 articles

Development of clinical decision support for patients older than 65 years with fall-related TBI using artificial intelligence modeling.

PloS one
BACKGROUND: Older persons comprise most traumatic brain injury (TBI)-related hospitalizations and deaths and are particularly susceptible to fall-induced TBIs. The combination of increased frailty and susceptibility to clinical decline creates a sign...

Conventional and machine learning-based analysis of age, body weight and body height significance in knot position-related thyrohyoid and cervical spine fractures in suicidal hangings.

International journal of legal medicine
The thyrohyoid complex and cervical spine fracture distribution patterns may reflect the knot position as the force distribution by the noose to different neck regions may vary depending on it. Recently, machine learning models (MLm) were used to cla...

A comparative analysis of trauma-related mortality in South Korea using classification models.

International journal of medical informatics
BACKGROUND: Reducing mortality among severe trauma patients requires the establishment of an effective emergency transportation system and the rapid transfer of patients to appropriate medical facilities. Machine learning offers significant potential...

Deep learning for automated hip fracture detection and classification : achieving superior accuracy.

The bone & joint journal
AIMS: The aim of this study was to develop and evaluate a deep learning-based model for classification of hip fractures to enhance diagnostic accuracy.

Predicting early recurrence in locally advanced gastric cancer after gastrectomy using CT-based deep learning model: a multicenter study.

International journal of surgery (London, England)
BACKGROUND: Early recurrence in patients with locally advanced gastric cancer (LAGC) portends aggressive biological characteristics and a dismal prognosis. Predicting early recurrence may help determine treatment strategies for LAGC. The goal is to d...

Development of a machine learning model and a web application for predicting neurological outcome at hospital discharge in spinal cord injury patients.

The spine journal : official journal of the North American Spine Society
BACKGROUND: Spinal cord injury (SCI) is a devastating condition with profound physical, psychological, and socioeconomic consequences. Despite advances in SCI treatment, accurately predicting functional recovery remains a significant challenge. Conve...

External validation of 12 existing survival prediction models for patients with spinal metastases.

The spine journal : official journal of the North American Spine Society
BACKGROUND CONTEXT: Survival prediction models for patients with spinal metastases may inform patients and clinicians in shared decision-making.

Integrating machine learning for treatment decisions in anterior open bite orthodontic cases: A retrospective study.

Journal of the World federation of orthodontists
INTRODUCTION: This article explores the integration of machine learning (ML) algorithms to aid in treatment planning and extraction decisions for anterior open bite cases, leveraging demographic, clinical, and radiographic data to predict treatment o...

A novel artificial intelligence framework to quantify the impact of clinical compared with nonclinical influences on postoperative length of stay.

Surgery
BACKGROUND: The relative proportion of clinical compared with nonclinical influences on length of stay after colectomy has never been measured. We developed a novel machine-learning framework that quantifies the proportion of length of stay after col...

TransAnaNet: Transformer-based anatomy change prediction network for head and neck cancer radiotherapy.

Medical physics
BACKGROUND: Adaptive radiotherapy (ART) can compensate for the dosimetric impact of anatomic change during radiotherapy of head-neck cancer (HNC) patients. However, implementing ART universally poses challenges in clinical workflow and resource alloc...