AIMC Topic: Ribosomes

Clear Filters Showing 11 to 20 of 25 articles

Computed structures of core eukaryotic protein complexes.

Science (New York, N.Y.)
Protein-protein interactions play critical roles in biology, but the structures of many eukaryotic protein complexes are unknown, and there are likely many interactions not yet identified. We take advantage of advances in proteome-wide amino acid coe...

Robotic end-to-end fusion of microtubules powered by kinesin.

Science robotics
The active assembly of molecules by nanorobots has advanced greatly since “molecular manufacturing”—that is, the use of nanoscale tools to build molecular structures—was proposed. In contrast to a catalyst, which accelerates a reaction by smoothing t...

Deep learning improves macromolecule identification in 3D cellular cryo-electron tomograms.

Nature methods
Cryogenic electron tomography (cryo-ET) visualizes the 3D spatial distribution of macromolecules at nanometer resolution inside native cells. However, automated identification of macromolecules inside cellular tomograms is challenged by noise and rec...

Predicting mean ribosome load for 5'UTR of any length using deep learning.

PLoS computational biology
The 5' untranslated region plays a key role in regulating mRNA translation and consequently protein abundance. Therefore, accurate modeling of 5'UTR regulatory sequences shall provide insights into translational control mechanisms and help interpret ...

Full-length ribosome density prediction by a multi-input and multi-output model.

PLoS computational biology
Translation elongation is regulated by a series of complicated mechanisms in both prokaryotes and eukaryotes. Although recent advance in ribosome profiling techniques has enabled one to capture the genome-wide ribosome footprints along transcripts at...

LncLocation: Efficient Subcellular Location Prediction of Long Non-Coding RNA-Based Multi-Source Heterogeneous Feature Fusion.

International journal of molecular sciences
Recent studies uncover that subcellular location of long non-coding RNAs (lncRNAs) can provide significant information on its function. Due to the lack of experimental data, the number of lncRNAs is very limited, experimentally verified subcellular l...

Large-scale DNA-based phenotypic recording and deep learning enable highly accurate sequence-function mapping.

Nature communications
Predicting effects of gene regulatory elements (GREs) is a longstanding challenge in biology. Machine learning may address this, but requires large datasets linking GREs to their quantitative function. However, experimental methods to generate such d...

The hunt for sORFs: A multidisciplinary strategy.

Experimental cell research
Growing evidence illustrates the shortcomings on the current understanding of the full complexity of the proteome. Previously overlooked small open reading frames (sORFs) and their encoded microproteins have filled important gaps, exerting their func...

NeuRiPP: Neural network identification of RiPP precursor peptides.

Scientific reports
Significant progress has been made in the past few years on the computational identification of biosynthetic gene clusters (BGCs) that encode ribosomally synthesized and post-translationally modified peptides (RiPPs). This is done by identifying both...

Nervous-Like Circuits in the Ribosome Facts, Hypotheses and Perspectives.

International journal of molecular sciences
In the past few decades, studies on translation have converged towards the metaphor of a "ribosome nanomachine"; they also revealed intriguing ribosome properties challenging this view. Many studies have shown that to perform an accurate protein synt...