AI Medical Compendium Topic:
Risk Factors

Clear Filters Showing 811 to 820 of 2361 articles

Utilising intraoperative respiratory dynamic features for developing and validating an explainable machine learning model for postoperative pulmonary complications.

British journal of anaesthesia
BACKGROUND: Timely detection of modifiable risk factors for postoperative pulmonary complications (PPCs) could inform ventilation strategies that attenuate lung injury. We sought to develop, validate, and internally test machine learning models that ...

Exploring the intersection of obesity and gender in COVID-19 outcomes in hospitalized Mexican patients: a comparative analysis of risk profiles using unsupervised machine learning.

Frontiers in public health
INTRODUCTION: Obesity and gender play a critical role in shaping the outcomes of COVID-19 disease. These two factors have a dynamic relationship with each other, as well as other risk factors, which hinders interpretation of how they influence severi...

A complexity evaluation system for mitral valve repair based on preoperative echocardiographic and machine learning.

Hellenic journal of cardiology : HJC = Hellenike kardiologike epitheorese
BACKGROUND: To develop a novel complexity evaluation system for mitral valve repair based on preoperative echocardiographic data and multiple machine learning algorithms.

Machine learning for predicting Chagas disease infection in rural areas of Brazil.

PLoS neglected tropical diseases
INTRODUCTION: Chagas disease is a severe parasitic illness that is prevalent in Latin America and often goes unaddressed. Early detection and treatment are critical in preventing the progression of the illness and its associated life-threatening comp...

Prediction of cardiovascular risk factors from retinal fundus photographs: Validation of a deep learning algorithm in a prospective non-interventional study in Kenya.

Diabetes, obesity & metabolism
AIM: Hypertension and diabetes mellitus (DM) are major causes of morbidity and mortality, with growing burdens in low-income countries where they are underdiagnosed and undertreated. Advances in machine learning may provide opportunities to enhance d...

The relationship between heavy metals and metabolic syndrome using machine learning.

Frontiers in public health
BACKGROUND: Exposure to high levels of heavy metals has been widely recognized as an important risk factor for metabolic syndrome (MetS). The main purpose of this study is to assess the associations between the level of heavy metal exposure and Mets ...

Predictive modeling of deep vein thrombosis risk in hospitalized patients: A Q-learning enhanced feature selection model.

Computers in biology and medicine
Deep vein thrombosis (DVT) represents a critical health concern due to its potential to lead to pulmonary embolism, a life-threatening complication. Early identification and prediction of DVT are crucial to prevent thromboembolic events and implement...

Development and validation of machine learning models to predict frailty risk for elderly.

Journal of advanced nursing
AIMS: Early identification and intervention of the frailty of the elderly will help lighten the burden of social medical care and improve the quality of life of the elderly. Therefore, we used machine learning (ML) algorithm to develop models to pred...

Conventional and machine learning-based risk scores for patients with early-stage hepatocellular carcinoma.

Clinical and molecular hepatology
BACKGROUND/AIMS: The performance of machine learning (ML) in predicting the outcomes of patients with hepatocellular carcinoma (HCC) remains uncertain. We aimed to develop risk scores using conventional methods and ML to categorize early-stage HCC pa...