AIMC Topic: RNA-Seq

Clear Filters Showing 171 to 180 of 181 articles

A comprehensive overview and critical evaluation of gene regulatory network inference technologies.

Briefings in bioinformatics
Gene regulatory network (GRN) is the important mechanism of maintaining life process, controlling biochemical reaction and regulating compound level, which plays an important role in various organisms and systems. Reconstructing GRN can help us to un...

Coupled co-clustering-based unsupervised transfer learning for the integrative analysis of single-cell genomic data.

Briefings in bioinformatics
Unsupervised methods, such as clustering methods, are essential to the analysis of single-cell genomic data. The most current clustering methods are designed for one data type only, such as single-cell RNA sequencing (scRNA-seq), single-cell ATAC seq...

Identification of pan-cancer Ras pathway activation with deep learning.

Briefings in bioinformatics
The identification of hidden responders is often an essential challenge in precision oncology. A recent attempt based on machine learning has been proposed for classifying aberrant pathway activity from multiomic cancer data. However, we note several...

scCancer: a package for automated processing of single-cell RNA-seq data in cancer.

Briefings in bioinformatics
Molecular heterogeneities and complex microenvironments bring great challenges for cancer diagnosis and treatment. Recent advances in single-cell RNA-sequencing (scRNA-seq) technology make it possible to study cancer cell heterogeneities and microenv...

Integration and transfer learning of single-cell transcriptomes via cFIT.

Proceedings of the National Academy of Sciences of the United States of America
Large, comprehensive collections of single-cell RNA sequencing (scRNA-seq) datasets have been generated that allow for the full transcriptional characterization of cell types across a wide variety of biological and clinical conditions. As new methods...

Identification of Gene Regulatory Networks from Single-Cell Expression Data.

Methods in molecular biology (Clifton, N.J.)
Single-cell RNAseq is an emerging technology that allows the quantification of gene expression in individual cells. In plants, single-cell sequencing technology has been applied to generate root cell expression maps under many experimental conditions...

Style transfer with variational autoencoders is a promising approach to RNA-Seq data harmonization and analysis.

Bioinformatics (Oxford, England)
MOTIVATION: The transcriptomic data are being frequently used in the research of biomarker genes of different diseases and biological states. The most common tasks there are the data harmonization and treatment outcome prediction. Both of them can be...

Single-cell analyses and machine learning define hematopoietic progenitor and HSC-like cells derived from human PSCs.

Blood
Hematopoietic stem and progenitor cells (HSPCs) develop in distinct waves at various anatomical sites during embryonic development. The in vitro differentiation of human pluripotent stem cells (hPSCs) recapitulates some of these processes; however, i...

Machine Learning Analysis of Blood microRNA Data in Major Depression: A Case-Control Study for Biomarker Discovery.

The international journal of neuropsychopharmacology
BACKGROUND: There is a lack of reliable biomarkers for major depressive disorder (MDD) in clinical practice. However, several studies have shown an association between alterations in microRNA levels and MDD, albeit none of them has taken advantage of...

Prediction of condition-specific regulatory genes using machine learning.

Nucleic acids research
Recent advances in genomic technologies have generated data on large-scale protein-DNA interactions and open chromatin regions for many eukaryotic species. How to identify condition-specific functions of transcription factors using these data has bec...