AIMC Topic: ROC Curve

Clear Filters Showing 1061 to 1070 of 3370 articles

A Deep Learning Model for Detecting Rhegmatogenous Retinal Detachment Using Ophthalmologic Ultrasound Images.

Ophthalmologica. Journal international d'ophtalmologie. International journal of ophthalmology. Zeitschrift fur Augenheilkunde
INTRODUCTION: Rhegmatogenous retinal detachment (RRD) is one of the most common fundus diseases. Many rural areas of China have few ophthalmologists, and ophthalmologic ultrasound examination is of great significance for remote diagnosis of RRD. Ther...

Deep learning for classifying the stages of periodontitis on dental images: a systematic review and meta-analysis.

BMC oral health
BACKGROUND: The development of deep learning (DL) algorithms for use in dentistry is an emerging trend. Periodontitis is one of the most prevalent oral diseases, which has a notable impact on the life quality of patients. Therefore, it is crucial to ...

Hessian Regularized -Nonnegative Matrix Factorization and Deep Learning for miRNA-Disease Associations Prediction.

Interdisciplinary sciences, computational life sciences
Since the identification of microRNAs (miRNAs), empirical research has demonstrated their crucial involvement in the functioning of organisms. Investigating miRNAs significantly bolsters efforts related to averting, diagnosing, and treating intricate...

Automated detection and segmentation of pleural effusion on ultrasound images using an Attention U-net.

Journal of applied clinical medical physics
BACKGROUND: Ultrasonic for detecting and evaluating pleural effusion is an essential part of the Extended Focused Assessment with Sonography in Trauma (E-FAST) in emergencies. Our study aimed to develop an Artificial Intelligence (AI) diagnostic mode...

Retinal Photograph-based Deep Learning System for Detection of Thyroid-Associated Ophthalmopathy.

The Journal of craniofacial surgery
BACKGROUND: The diagnosis of thyroid-associated ophthalmopathy (TAO) usually requires a comprehensive examination, including clinical symptoms, radiological examinations, and blood tests. Therefore, cost-effective and noninvasive methods for the dete...

Opportunistic Screening for Asymptomatic Left Ventricular Dysfunction With the Use of Electrocardiographic Artificial Intelligence: A Cost-Effectiveness Approach.

The Canadian journal of cardiology
BACKGROUND: The burden of asymptomatic left ventricular dysfunction (LVD) is greater than that of heart failure; however, a cost-effective tool for asymptomatic LVD screening has not been well validated. We aimed to prospectively validate an artifici...

Image-based AI diagnostic performance for fatty liver: a systematic review and meta-analysis.

BMC medical imaging
BACKGROUND: The gold standard to diagnose fatty liver is pathology. Recently, image-based artificial intelligence (AI) has been found to have high diagnostic performance. We systematically reviewed studies of image-based AI in the diagnosis of fatty ...

Attention-based neural networks for clinical prediction modelling on electronic health records.

BMC medical research methodology
BACKGROUND: Deep learning models have had a lot of success in various fields. However, on structured data they have struggled. Here we apply four state-of-the-art supervised deep learning models using the attention mechanism and compare against logis...

Classifying Alzheimer's disease and normal subjects using machine learning techniques and genetic-environmental features.

Journal of the Formosan Medical Association = Taiwan yi zhi
BACKGROUND: Alzheimer's disease (AD) is complicated by multiple environmental and polygenetic factors. The accuracy of artificial neural networks (ANNs) incorporating the common factors for identifying AD has not been evaluated.

Diagnostic accuracy of artificial intelligence in detecting retinitis pigmentosa: A systematic review and meta-analysis.

Survey of ophthalmology
Retinitis pigmentosa (RP) is often undetected in its early stages. Artificial intelligence (AI) has emerged as a promising tool in medical diagnostics. Therefore, we conducted a systematic review and meta-analysis to evaluate the diagnostic accuracy ...