BACKGROUND: Radiomics is a noninvasive method using machine learning to support personalised medicine. Preprocessing filters such as wavelet and Laplacian-of-Gaussian filters are commonly used being thought to increase predictive performance. However...
The aim of the work described here was to develop an ultrasound (US) image-based deep learning model to reduce the rate of malignancy among breast lesions diagnosed as category 4A of the Breast Imaging-Reporting and Data System (BI-RADS) during the p...
BACKGROUND: Protein electrophoresis (PEP) is an important tool in supporting the analytical characterization of protein status in diseases related to monoclonal components, inflammation, and antibody deficiency. Here, we developed a deep learning-bas...
In this study, we tested and compared radiomics and deep learning-based approaches on the public LUNG1 dataset, for the prediction of 2-year overall survival (OS) in non-small cell lung cancer patients. Radiomic features were extracted from the gross...
Early detection and treatment of diseases through health checkups are effective in improving life expectancy. In this study, we compared the predictive ability for 5-year mortality between two machine learning-based models (gradient boosting decision...
The process of pneumonia detection has been the focus of researchers as it has proved itself to be one of the most dangerous and life-threatening disorders. In recent years, many machine learning and deep learning algorithms have been applied in an a...
Fibronectin (FN) plays an essential role in the host's response to infection. In previous studies, a significant decrease in the FN level was observed in sepsis; however, it has not been clearly elucidated how this parameter affects the patient's sur...
BMC medical informatics and decision making
Aug 1, 2022
BACKGROUND: Traumatic Brain Injury (TBI) is a common condition with potentially severe long-term complications, the prediction of which remains challenging. Machine learning (ML) methods have been used previously to help physicians predict long-term ...