We present performance results concerning the validation for anxiety level detection based on trained mathematical models using supervised machine learning techniques. The model training is based on biosignals acquired in a randomized controlled tria...
PURPOSE: To predict the anti-vascular endothelial growth factor (VEGF) therapeutic response of diabetic macular oedema (DME) patients from optical coherence tomography (OCT) at the initiation stage of treatment using a machine learning-based self-exp...
BACKGROUND & AIMS: Microsatellite instability (MSI) and mismatch-repair deficiency (dMMR) in colorectal tumors are used to select treatment for patients. Deep learning can detect MSI and dMMR in tumor samples on routine histology slides faster and le...
Since December 2019 the novel coronavirus SARS-CoV-2 has been identified as the cause of the pandemic COVID-19. Early symptoms overlap with other common conditions such as common cold and Influenza, making early screening and diagnosis are crucial go...
International journal of computer assisted radiology and surgery
Jun 16, 2020
PURPOSE: Neoadjuvant chemotherapy (NAC) aims to minimize the tumor size before surgery. Predicting response to NAC could reduce toxicity and delays to effective intervention. Computational analysis of dynamic contrast-enhanced magnetic resonance imag...
The geographical spread of dengue is a global public health concern. This is largely mediated by the importation of dengue from endemic to non-endemic areas via the increasing connectivity of the global air transport network. The dynamic nature and i...
OBJECTIVE: To evaluate machine learning-based classifiers in detecting clinically significant prostate cancer (PCa) with Prostate Imaging Reporting and Data System (PI-RADS) score 3 lesions.
HYPOTHESIS/PURPOSE: The objective is to develop and validate an artificial intelligence model, specifically an artificial neural network (ANN), to predict length of stay (LOS), discharge disposition, and inpatient charges for primary anatomic total (...
Diagnostic microbiology and infectious disease
Jun 8, 2020
Previous studies have shown promising results of machine learning (ML) models for predicting health outcomes. We develop and test ML models for predicting Clostridioides difficile infection (CDI) in hospitalized patients. This is a retrospective coho...
BACKGROUND: Clear cell renal cell carcinoma (ccRCC) is the most common subtype of renal cell carcinoma and accounts for cancer-related deaths. Survival rates are very low when the tumor is discovered in the late-stage. Thus, developing an efficient s...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.