AIMC Topic: Sensitivity and Specificity

Clear Filters Showing 501 to 510 of 2873 articles

Prediction of Anastomotic Leakage in Esophageal Cancer Surgery: A Multimodal Machine Learning Model Integrating Imaging and Clinical Data.

Academic radiology
RATIONALE AND OBJECTIVES: Surgery in combination with chemo/radiotherapy is the standard treatment for locally advanced esophageal cancer. Even after the introduction of minimally invasive techniques, esophagectomy carries significant morbidity and m...

DeepSAP: A Novel Brain Image-Based Deep Learning Model for Predicting Stroke-Associated Pneumonia From Spontaneous Intracerebral Hemorrhage.

Academic radiology
RATIONALE AND OBJECTIVE: Stroke-associated pneumonia (SAP) often appears as a complication following intracerebral hemorrhage (ICH), leading to poor prognosis and increased mortality rates. Previous studies have typically developed prediction models ...

Rapid detection of lung cancer based on serum Raman spectroscopy and a support vector machine: a case-control study.

BMC cancer
BACKGROUND: Early screening and detection of lung cancer is essential for the diagnosis and prognosis of the disease. In this paper, we investigated the feasibility of serum Raman spectroscopy for rapid lung cancer screening.

Efficacy of an Artificial Intelligence App (Aysa) in Dermatological Diagnosis: Cross-Sectional Analysis.

JMIR dermatology
BACKGROUND: Dermatology is an ideal specialty for artificial intelligence (AI)-driven image recognition to improve diagnostic accuracy and patient care. Lack of dermatologists in many parts of the world and the high frequency of cutaneous disorders a...

Artificial Intelligence Application in Skull Bone Fracture with Segmentation Approach.

Journal of imaging informatics in medicine
This study aims to evaluate an AI model designed to automatically classify skull fractures and visualize segmentation on emergent CT scans. The model's goal is to boost diagnostic accuracy, alleviate radiologists' workload, and hasten diagnosis, ther...

Selection of Convolutional Neural Network Model for Bladder Tumor Classification of Cystoscopy Images and Comparison with Humans.

Journal of endourology
An investigation of various convolutional neural network (CNN)-based deep learning algorithms was conducted to select the appropriate artificial intelligence (AI) model for calculating the diagnostic performance of bladder tumor classification on cy...

Machine learning methods in automated detection of CT enterography findings in Crohn's disease: A feasibility study.

Clinical imaging
PURPOSE: Qualitative findings in Crohn's disease (CD) can be challenging to reliably report and quantify. We evaluated machine learning methodologies to both standardize the detection of common qualitative findings of ileal CD and determine finding s...

Deep learning analysis for differential diagnosis and risk classification of gastrointestinal tumors.

Scandinavian journal of gastroenterology
OBJECTIVES: Recently, artificial intelligence (AI) has been applied to clinical diagnosis. Although AI has already been developed for gastrointestinal (GI) tract endoscopy, few studies have applied AI to endoscopic ultrasound (EUS) images. In this st...

Differentiating Gastrointestinal Stromal Tumors From Leiomyomas of Upper Digestive Tract Using Convolutional Neural Network Model by Endoscopic Ultrasonography.

Journal of clinical gastroenterology
BACKGROUND: Gastrointestinal stromal tumors (GISTs) and leiomyomas are the most common submucosal tumors of the upper digestive tract, and the diagnosis of the tumors is essential for their treatment and prognosis. However, the ability of endoscopic ...

Comparison of lung ultrasound assisted by artificial intelligence to radiology examination in pneumothorax.

Journal of clinical ultrasound : JCU
BACKGROUND: Lung ultrasound can evaluate for pneumothorax but the accuracy of diagnosis depends on experience among physicians. This study aimed to investigate the sensitivity and specificity of intelligent lung ultrasound in comparison with chest x-...