AIMC Topic: Sepsis

Clear Filters Showing 271 to 280 of 349 articles

Development and application of an early prediction model for risk of bloodstream infection based on real-world study.

BMC medical informatics and decision making
BACKGROUND: Bloodstream Infection (BSI) is a severe systemic infectious disease that can lead to sepsis and Multiple Organ Dysfunction Syndrome (MODS), resulting in high mortality rates and posing a major public health burden globally. Early identifi...

Predictors and associations of complications in ureteroscopy for stone disease using AI: outcomes from the FLEXOR registry.

Urolithiasis
We aimed to develop machine learning(ML) algorithms to evaluate complications of flexible ureteroscopy and laser lithotripsy(fURSL), providing a valid predictive model. 15 ML algorithms were trained on a large number fURSL data from > 6500 patients f...

Multicenter target trial emulation to evaluate corticosteroids for sepsis stratified by predicted organ dysfunction trajectory.

Nature communications
Corticosteroids decrease the duration of organ dysfunction in sepsis and a range of overlapping and complementary infectious critical illnesses, including septic shock, pneumonia and the acute respiratory distress syndrome (ARDS). The risk and benefi...

Machine learning model to predict sepsis in ICU patients with intracerebral hemorrhage.

Scientific reports
Patients with intracerebral hemorrhage (ICH) are highly susceptible to sepsis. This study evaluates the efficacy of machine learning (ML) models in predicting sepsis risk in intensive care units (ICUs) patients with ICH. We conducted a retrospective ...

Identification of Hub Genes and Key Pathways Associated with Sepsis Progression Using Weighted Gene Co-Expression Network Analysis and Machine Learning.

International journal of molecular sciences
Sepsis is a life-threatening condition driven by dysregulated immune responses, resulting in organ dysfunction and high mortality rates. Identifying key genes and pathways involved in sepsis progression is crucial for improving diagnostic and therape...

Comparison of different AI systems for diagnosing sepsis, septic shock, and cardiogenic shock: a retrospective study.

Scientific reports
Sepsis, septic shock, and cardiogenic shock are life-threatening conditions associated with high mortality rates, but differentiating them is complex because they share certain symptoms. Using the Medical Information Mart for Intensive Care (MIMIC)-I...

Generative AI mitigates representation bias and improves model fairness through synthetic health data.

PLoS computational biology
Representation bias in health data can lead to unfair decisions and compromise the generalisability of research findings. As a consequence, underrepresented subpopulations, such as those from specific ethnic backgrounds or genders, do not benefit equ...

Study on the mechanism of action of the active ingredient of Calculus Bovis in the treatment of sepsis by integrating single-cell sequencing and machine learning.

Medicine
BACKGROUND: Sepsis, a complex inflammatory condition with high mortality rates, lacks effective treatments. This study explores the therapeutic mechanisms of Calculus Bovis in sepsis using network pharmacology and RNA sequencing.

Screening of mitochondrial-related biomarkers connected with immune infiltration for acute respiratory distress syndrome through WGCNA and machine learning.

Medicine
Septic acute respiratory distress syndrome (ARDS) is a complex and noteworthy type, but its molecular mechanism has not been fully elucidated. The aim is to explore specific biomarkers to diagnose sepsis-induced ARDS. Gene expression data of sepsis a...

Identification of DNA damage repair-related genes in sepsis using bioinformatics and machine learning: An observational study.

Medicine
Sepsis is a life-threatening disease with a high mortality rate, for which the pathogenetic mechanism still unclear. DNA damage repair (DDR) is essential for maintaining genome integrity. This study aimed to explore the role of DDR-related genes in t...