AIMC Topic: Support Vector Machine

Clear Filters Showing 121 to 130 of 4695 articles

Electrocardiographic Discrimination of Long QT Syndrome Genotypes: A Comparative Analysis and Machine Learning Approach.

Sensors (Basel, Switzerland)
Long QT syndrome (LQTS) presents a group of inheritable channelopathies with prolonged ventricular repolarization, leading to syncope, ventricular tachycardia, and sudden death. Differentiating LQTS genotypes is crucial for targeted management and tr...

Enhanced prediction of ventilator-associated pneumonia in patients with traumatic brain injury using advanced machine learning techniques.

Scientific reports
Ventilator-associated pneumonia significantly increases morbidity, mortality, and healthcare costs among patients with traumatic brain injury. Accurately predicting risk can facilitate earlier interventions and improve patient outcomes. This study le...

Interpretable machine learning model for early prediction of disseminated intravascular coagulation in critically ill children.

Scientific reports
Disseminated intravascular coagulation (DIC) is a thrombo-hemorrhagic disorder that can be life-threatening in critically ill children, and the quest for an accurate and efficient method for early DIC prediction is of paramount importance. Candidate ...

Enlightened prognosis: Hepatitis prediction with an explainable machine learning approach.

PloS one
Hepatitis is a widespread inflammatory condition of the liver, presenting a formidable global health challenge. Accurate and timely detection of hepatitis is crucial for effective patient management, yet existing methods exhibit limitations that unde...

Detecting cognitive impairment in cerebrovascular disease using gait, dual tasks, and machine learning.

BMC medical informatics and decision making
BACKGROUND: Cognitive impairment is common after a stroke, but it can often go undetected. In this study, we investigated whether using gait and dual tasks could help detect cognitive impairment after stroke.

Efficient multi-task learning with instance selection for biomedical NLP.

Computers in biology and medicine
BACKGROUND: Biomedical natural language processing (NLP) increasingly relies on large language models and extensive datasets, presenting significant computational challenges.

Machine learning models for pancreatic cancer diagnosis based on microbiome markers from serum extracellular vesicles.

Scientific reports
Pancreatic cancer (PC) is a fatal disease with an extremely low 5-year survival rate, mainly because of its poor detection rate in early stages. Given emerging evidence of the relationship between microbiota composition and diseases, this study aims ...

SGA-Driven feature selection and random forest classification for enhanced breast cancer diagnosis: A comparative study.

Scientific reports
In this study, we propose a novel approach for breast cancer classification that integrates the Seagull Optimization Algorithm (SGA) for feature selection with the Random Forest (RF) classifier for effective data classification. The novelty of our ap...

Multivariate Classification of Adolescent Major Depressive Disorder Using Whole-brain Functional Connectivity.

Academic radiology
RATIONALE AND OBJECTIVES: Adolescent major depressive disorder (MDD) is a serious mental health condition that has been linked to abnormal functional connectivity (FC) patterns within the brain. However, whether FC could be used as a potential biomar...