Breast cancer remains a global health burden, with an increase in deaths related to this particular cancer. Accurately predicting and diagnosing breast cancer is important for treatment development and survival of patients. This study aimed to accura...
SIGNIFICANCE: The incidence of keratinocyte carcinomas (KCs) is increasing every year, making the task of developing new methods for KC early diagnosis of utmost medical and economical importance.
The accurate diagnosis of skin diseases is crucial for effective patient management and treatment, yet traditional diagnostic methods often involve subjective interpretation and can lead to variability in outcomes. In this study, we harness the power...
OBJECTIVE: To develop and validate a deep neural network (DNN) model for diagnosing Parkinson's Disease (PD) using handwritten spiral and wave images, and to compare its performance with various machine learning (ML) and deep learning (DL) models.
We aimed to predict CD44 expression and assess its prognostic significance in patients with high-grade gliomas (HGG) using non-invasive radiomics models based on machine learning. Enhanced magnetic resonance imaging, along with the corresponding gene...
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...
This study aimed to develop an interpretable machine learning model to predict methylene blue (MB) responsiveness in adult patients with refractory septic shock and to identify key factors influencing MB responsiveness using the SHapley Additive exPl...
Aging clinical and experimental research
Mar 1, 2025
OBJECTIVES: Sarcopenic obesity (SO), characterized by the coexistence of obesity and sarcopenia, is an increasingly prevalent condition in aging populations, associated with numerous adverse health outcomes. We aimed to identify and validate an expla...
A novel data enhancement method for olfactory visual images was proposed in this study, combined with deep learning to achieve the accurate prediction of total volatile basic nitrogen (TVB-N) content in chilled mutton. Specifically, the sliding-windo...
OBJECTIVE: This study aims to investigate the exosome-derived metabolomicsĀ profiles in systemic lupus erythematosus (SLE), identify differential metabolites, and analyze their potential as diagnostic markers for SLE and lupus nephritis (LN).