AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Tomography, X-Ray Computed

Showing 211 to 220 of 4530 articles

Clear Filters

The use of artificial intelligence to aid the diagnosis of lung cancer - A retrospective-cohort study.

Radiography (London, England : 1995)
INTRODUCTION: AI software in the form of deep learning-based automatic detection (DLAD) algorithms for chest X-ray (CXR) interpretation have shown success in early detection of lung cancer (LC), however, there remains uncertainty related to clinical ...

The impact of the novel CovBat harmonization method on enhancing radiomics feature stability and machine learning model performance: A multi-center, multi-device study.

European journal of radiology
PURPOSE: This study aims to assess whether the novel CovBat harmonization method can further reduce radiomics feature variability from different imaging devices in multi-center studies and improve machine learning model performance compared to the Co...

Fully automated segmentation and classification of renal tumors on CT scans via machine learning.

BMC cancer
BACKGROUND: To develop and test the performance of a fully automated system for classifying renal tumor subtypes via deep machine learning for automated segmentation and classification.

Advancing lung cancer diagnosis: Combining 3D auto-encoders and attention mechanisms for CT scan analysis.

Journal of X-ray science and technology
ObjectiveThe goal of this study is to assess the effectiveness of a hybrid deep learning model that combines 3D Auto-encoders with attention mechanisms to detect lung cancer early from CT scan images. The study aims to improve diagnostic accuracy, se...

Multi-Branch CNN-LSTM Fusion Network-Driven System With BERT Semantic Evaluator for Radiology Reporting in Emergency Head CTs.

IEEE journal of translational engineering in health and medicine
The high volume of emergency room patients often necessitates head CT examinations to rule out ischemic, hemorrhagic, or other organic pathologies. A system that enhances the diagnostic efficacy of head CT imaging in emergency settings through struct...

A novel clinical investigation using deep learning and human-in-the-loop approach in orbital volume measurement.

Journal of cranio-maxillo-facial surgery : official publication of the European Association for Cranio-Maxillo-Facial Surgery
Orbital volume assessment is crucial for surgical planning. Traditional methods lack efficiency and accuracy. Recent studies explore AI-driven techniques, but research on their clinical effectiveness is limited. This study included 349 patients aged ...

Automatic segmentation and volumetric analysis of intracranial hemorrhages in brain CT images.

European journal of radiology
BACKGROUND: Intracranial hemorrhages (ICH) are life-threatening conditions that require rapid detection and precise subtype classification. Automated segmentation and volumetric analysis using deep learning can enhance clinical decision-making.

Impact of Deep Learning 3D CT Super-Resolution on AI-Based Pulmonary Nodule Characterization.

Tomography (Ann Arbor, Mich.)
BACKGROUND/OBJECTIVES: Correct pulmonary nodule volumetry and categorization is paramount for accurate diagnosis in lung cancer screening programs. CT scanners with slice thicknesses of multiple millimetres are still common worldwide, and slice thick...

Deep learning-based algorithm for classifying high-resolution computed tomography features in coal workers' pneumoconiosis.

Biomedical engineering online
BACKGROUND: Coal workers' pneumoconiosis is a chronic occupational lung disease with considerable pulmonary complications, including irreversible lung diseases that are too complex to accurately identify via chest X-rays. The classification of clinic...

Artificial intelligence-assisted platform performs high detection ability of hepatocellular carcinoma in CT images: an external clinical validation study.

BMC cancer
BACKGROUND: Accurate detection of hepatocellular carcinoma (HCC) in multiphasic contrast CT is essential for effective treatment and surgical planning. However, the variety of CT images, the misdiagnosis and missed diagnosis, and the inconsistent dia...