Unsupervised deformable multimodal medical image registration often confronts complex scenarios, which include intermodality domain gaps, multi-organ anatomical heterogeneity, and physiological motion variability. These factors introduce substantial ...
Osteoporosis international : a journal established as result of cooperation between the European Foundation for Osteoporosis and the National Osteoporosis Foundation of the USA
Apr 22, 2025
UNLABELLED: To determine the potential economic, morbidity and mortality impact of improvements in reporting of vertebral fragility fractures (VFFs) following a complete audit cycle. Six percent interval increase in reporting of moderate/severe VFFs ...
Finite element analysis (FEA), a biomechanical simulation technique capable of providing direct mechanical visualization for CT-based digital models, has been extensively applied to fossil image datasets to address key evolutionary questions in paleo...
Since the outbreak of the COVID-19 pandemic in 2019, medical imaging has emerged as a primary modality for diagnosing COVID-19 pneumonia. In clinical settings, the segmentation of lung infections from computed tomography images enables rapid and accu...
RATIONALE AND OBJECTIVES: The research aims to examine how CT-derived habitat radiomics can be used to predict lymphovascular invasion (LVI) in patients with T1-stage lung adenocarcinoma (LUAD), and compare its effectiveness to traditional radiomics ...
International journal of radiation oncology, biology, physics
Apr 17, 2025
BACKGROUND: Interfraction variations during radiation therapy pose a challenge for patients with cervical cancer, highlighting the benefits of online adaptive radiation therapy (oART). However, adaptation decisions rely on subjective image reviews by...
RATIONALE AND OBJECTIVES: To establish an automated osteoporosis detection model based on low-dose abdominal CT (LDCT). This model combined a deep learning-based automatic segmentation of the proximal femur with a radiomics-based bone status classifi...
: This scoping review explores the current state of the art of AI-based applications in the field of orthopedics, focusing on its implementation in diagnostic imaging and preoperative planning of knee joint procedures. : The search was carried out us...
Segmenting the spine from CT images is crucial for diagnosing and treating spine-related conditions but remains challenging due to the spine's complex anatomy and imaging artifacts. This study introduces a novel encoder-decoder-based deep learning ap...
. Computed tomography perfusion (CTP) imaging is widely used for assessing acute ischemic stroke. However, conventional methods for quantifying CTP images, such as singular value decomposition (SVD), often lead to oscillations in the estimated residu...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.