AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Treatment Outcome

Showing 311 to 320 of 3071 articles

Clear Filters

Advancing equity in breast cancer care: natural language processing for analysing treatment outcomes in under-represented populations.

BMJ health & care informatics
OBJECTIVE: The study aimed to develop natural language processing (NLP) algorithms to automate extracting patient-centred breast cancer treatment outcomes from clinical notes in electronic health records (EHRs), particularly for women from under-repr...

Predicting Therapeutic Response to Hypoglossal Nerve Stimulation Using Deep Learning.

The Laryngoscope
OBJECTIVES: To develop and validate machine learning (ML) and deep learning (DL) models using drug-induced sleep endoscopy (DISE) images to predict the therapeutic efficacy of hypoglossal nerve stimulator (HGNS) implantation.

An artificial intelligence-designed predictive calculator of conversion from minimally invasive to open colectomy in colon cancer.

Updates in surgery
Minimally invasive surgery is safe and effective in colorectal cancer. Conversion to open surgery may be associated with adverse effects on treatment outcomes. This study aimed to assess risk factors of conversion from minimally invasive to open cole...

A novel radiomics approach for predicting TACE outcomes in hepatocellular carcinoma patients using deep learning for multi-organ segmentation.

Scientific reports
Transarterial chemoembolization (TACE) represent the standard of therapy for non-operative hepatocellular carcinoma (HCC), while prediction of long term treatment outcomes is a complex and multifactorial task. In this study, we present a novel machin...

Approved AI-based fluid monitoring to identify morphological and functional treatment outcomes in neovascular age-related macular degeneration in real-world routine.

The British journal of ophthalmology
AIM: To predict antivascular endothelial growth factor (VEGF) treatment requirements, visual acuity and morphological outcomes in neovascular age-related macular degeneration (nAMD) using fluid quantification by artificial intelligence (AI) in a real...

Application of machine learning in the analysis of multiparametric MRI data for the differentiation of treatment responses in breast cancer: retrospective study.

European journal of cancer prevention : the official journal of the European Cancer Prevention Organisation (ECP)
OBJECTIVE: The objective of this study is to develop and validate a multiparametric MRI model employing machine learning to predict the effectiveness of treatment and the stage of breast cancer.

Machine Learning to Predict Prostate Artery Embolization Outcomes.

Cardiovascular and interventional radiology
PURPOSE: This study leverages pre-procedural data and machine learning (ML) techniques to predict outcomes at one year following prostate artery embolization (PAE).

Individual Predictors of Response to A Behavioral Activation-Based Digital Smoking Cessation Intervention: A Machine Learning Approach.

Substance use & misuse
Depression is prevalent among individuals who smoke cigarettes and increases risk for relapse. A previous clinical trial suggests that Goal2Quit, a behavioral activation-based smoking cessation mobile app, effectively increases smoking abstinence an...

A machine learning radiomics based on enhanced computed tomography to predict neoadjuvant immunotherapy for resectable esophageal squamous cell carcinoma.

Frontiers in immunology
BACKGROUND: Patients with resectable esophageal squamous cell carcinoma (ESCC) receiving neoadjuvant immunotherapy (NIT) display variable treatment responses. The purpose of this study is to establish and validate a radiomics based on enhanced comput...