AIMC Topic: Triple Negative Breast Neoplasms

Clear Filters Showing 21 to 30 of 52 articles

Multiscale deep learning framework captures systemic immune features in lymph nodes predictive of triple negative breast cancer outcome in large-scale studies.

The Journal of pathology
The suggestion that the systemic immune response in lymph nodes (LNs) conveys prognostic value for triple-negative breast cancer (TNBC) patients has not previously been investigated in large cohorts. We used a deep learning (DL) framework to quantify...

Prediction of pathologic complete response to neoadjuvant systemic therapy in triple negative breast cancer using deep learning on multiparametric MRI.

Scientific reports
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer. Neoadjuvant systemic therapy (NAST) followed by surgery are currently standard of care for TNBC with 50-60% of patients achieving pathologic complete response (pCR). We i...

Deep learning-based system for automatic prediction of triple-negative breast cancer from ultrasound images.

Medical & biological engineering & computing
To develop a deep-learning system for the automatic identification of triple-negative breast cancer (TNBC) solely from ultrasound images. A total of 145 patients and 831 images were retrospectively enrolled at Peking Union College Hospital from April...

Deep Learning-Based Artificial Intelligence to Investigate Targeted Nanoparticles' Uptake in TNBC Cells.

International journal of molecular sciences
Triple negative breast cancer (TNBC) is the most aggressive subtype of breast cancer in women. It has the poorest prognosis along with limited therapeutic options. Smart nano-based carriers are emerging as promising approaches in treating TNBC due to...

Deep learning with biopsy whole slide images for pretreatment prediction of pathological complete response to neoadjuvant chemotherapy in breast cancer:A multicenter study.

Breast (Edinburgh, Scotland)
INTRODUCTION: Predicting pathological complete response (pCR) for patients receiving neoadjuvant chemotherapy (NAC) is crucial in establishing individualized treatment. Whole-slide images (WSIs) of tumor tissues reflect the histopathologic informatio...

Breast MRI Tumor Automatic Segmentation and Triple-Negative Breast Cancer Discrimination Algorithm Based on Deep Learning.

Computational and mathematical methods in medicine
BACKGROUND: Breast cancer is a kind of cancer that starts in the epithelial tissue of the breast. Breast cancer has been on the rise in recent years, with a younger generation developing the disease. Magnetic resonance imaging (MRI) plays an importan...

Combined diagnosis of multiparametric MRI-based deep learning models facilitates differentiating triple-negative breast cancer from fibroadenoma magnetic resonance BI-RADS 4 lesions.

Journal of cancer research and clinical oncology
PURPOSE: To investigate the value of the combined diagnosis of multiparametric MRI-based deep learning models to differentiate triple-negative breast cancer (TNBC) from fibroadenoma magnetic resonance Breast Imaging-Reporting and Data System category...

G-protein coupled receptor-associated sorting protein 1 (GASP-1), a ubiquitous tumor marker, promotes proliferation and invasion of triple negative breast cancer.

Experimental and molecular pathology
We have identified the novel protein GASP-1 (G protein coupled receptor-associated sorting protein 1) that appears to be a universal cancer marker and the expression of which in tumor tissue and patient sera is predictive of cancer severity (Tuszynsk...

Automatic identification of triple negative breast cancer in ultrasonography using a deep convolutional neural network.

Scientific reports
Triple negative (TN) breast cancer is a subtype of breast cancer which is difficult for early detection and the prognosis is poor. In this paper, 910 benign and 934 malignant (110 TN and 824 NTN) B-mode breast ultrasound images were collected. A Resn...

Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer.

Computational and mathematical methods in medicine
PURPOSE: To investigate whether quantitative radiomics features extracted from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) could be used to differentiate triple-negative breast cancer (TNBC) and nontriple-negative breast cancer (no...