AIMC Topic: Wounds and Injuries

Clear Filters Showing 21 to 30 of 148 articles

Predicting admission for fall-related injuries in older adults using artificial intelligence: A proof-of-concept study.

Geriatrics & gerontology international
AIM: Pre-injury frailty has been investigated as a tool to predict outcomes of older trauma patients. Using artificial intelligence principles of machine learning, we aimed to identify a "signature" (combination of clinical variables) that could pred...

Using supervised machine learning and ICD10 to identify non-accidental trauma in pediatric trauma patients in the Maryland Health Services Cost Review Commission dataset.

Child abuse & neglect
BACKGROUND: Identifying non-accidental trauma (NAT) in pediatric trauma patients is challenging. We developed a machine learning model that uses demographic characteristics and ICD10 codes to detect the first diagnosis of NAT.

External validation of an artificial intelligence model using clinical variables, including ICD-10 codes, for predicting in-hospital mortality among trauma patients: a multicenter retrospective cohort study.

Scientific reports
Artificial intelligence (AI) is being increasingly applied in healthcare to improve patient care and clinical outcomes. We previously developed an AI model using ICD-10 (International Classification of Diseases, Tenth Revision) codes with other clini...

Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics.

Theranostics
Skin injuries caused by physical, pathological, and chemical factors not only compromise appearance and barrier function but can also lead to life-threatening microbial infections, posing significant challenges for patients and healthcare systems. Ar...

Prediction of sepsis among patients with major trauma using artificial intelligence: a multicenter validated cohort study.

International journal of surgery (London, England)
BACKGROUND: Sepsis remains a significant challenge in patients with major trauma in the ICU. Early detection and treatment are crucial for improving outcomes and reducing mortality rates. Nonetheless, clinical tools for predicting sepsis among patien...

Forecasting Pediatric Trauma Volumes: Insights From a Retrospective Study Using Machine Learning.

The Journal of surgical research
INTRODUCTION: Rising pediatric firearm-related fatalities in the United States strain Trauma Centers. Predicting trauma volume could improve resource management and preparedness, particularly if daily forecasts are achievable. The aim of the study is...

Human intention recognition for trauma resuscitation: An interpretable deep learning approach for medical process data.

Journal of biomedical informatics
OBJECTIVE: Trauma resuscitation is the initial evaluation and management of injured patients in the emergency department. This time-critical process requires the simultaneous pursuit of multiple resuscitation goals. Recognizing whether the required g...

Clinically validated classification of chronic wounds method with memristor-based cellular neural network.

Scientific reports
Chronic wounds are a syndrome that affects around 4% of the world population due to several pathologies. The COV-19 pandemic has enforced the need of developing new techniques and technologies that can help clinicians to monitor the affected patients...

Artificial intelligence in emergency and trauma radiology: ASER AI/ML expert panel Delphi consensus statement on research guidelines, practices, and priorities.

Emergency radiology
BACKGROUND: Emergency/trauma radiology artificial intelligence (AI) is maturing along all stages of technology readiness, with research and development (R&D) ranging from data curation and algorithm development to post-market monitoring and retrainin...

Application of deep learning in wound size measurement using fingernail as the reference.

BMC medical informatics and decision making
OBJECTIVE: Most current wound size measurement devices or applications require manual wound tracing and reference markers. Chronic wound care usually relies on patients or caregivers who might have difficulties using these devices. Considering a more...