AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Xenobiotics

Showing 11 to 17 of 17 articles

Clear Filters

GLORYx: Prediction of the Metabolites Resulting from Phase 1 and Phase 2 Biotransformations of Xenobiotics.

Chemical research in toxicology
Predicting the structures of metabolites formed in humans can provide advantageous insights for the development of drugs and other compounds. Here we present GLORYx, which integrates machine learning-based site of metabolism (SoM) prediction with rea...

Key Physicochemical Properties Dictating Gastrointestinal Bioaccessibility of Microplastics-Associated Organic Xenobiotics: Insights from a Deep Learning Approach.

Environmental science & technology
A potential risk from human uptake of microplastics is the release of plastics-associated xenobiotics, but the key physicochemical properties of microplastics controlling this process are elusive. Here, we show that the gastrointestinal bioaccessibil...

Prediction of Farnesoid X Receptor Disruptors with Machine Learning Methods.

Chemical research in toxicology
The farnesoid X receptor (FXR) emerges as a promising drug target involved in regulating various metabolic pathways, yet some xenobiotic compounds binding to FXR would be an important determinant to induce the receptor dysfunctions that lead to undes...

Machine learning algorithm-based risk prediction model of coronary artery disease.

Molecular biology reports
In view of high mortality associated with coronary artery disease (CAD), development of an early predicting tool will be beneficial in reducing the burden of the disease. The database comprising demographic, conventional, folate/xenobiotic genetic ri...

Building predictive in vitro pulmonary toxicity assays using high-throughput imaging and artificial intelligence.

Archives of toxicology
Human lungs are susceptible to the toxicity induced by soluble xenobiotics. However, the direct cellular effects of many pulmonotoxic chemicals are not always clear, and thus, a general in vitro assay for testing pulmonotoxicity applicable to a wide ...

Artificial neural network-based exploration of gene-nutrient interactions in folate and xenobiotic metabolic pathways that modulate susceptibility to breast cancer.

Gene
In the current study, an artificial neural network (ANN)-based breast cancer prediction model was developed from the data of folate and xenobiotic pathway genetic polymorphisms along with the nutritional and demographic variables to investigate how m...