AI Medical Compendium Topic:
Young Adult

Clear Filters Showing 451 to 460 of 4353 articles

AI and Uncertain Motivation: Hidden allies that impact EFL argumentative essays using the Toulmin Model.

Acta psychologica
This study investigates the combined impact of artificial intelligence (AI) tools and Uncertain Motivation (UM) strategies on the argumentative writing performance of Saudi EFL learners, using the Toulmin Model. Sixty Saudi EFL students participated ...

Knowledge, attitudes, and perceptions of a group of Egyptian dental students toward artificial intelligence: a cross-sectional study.

BMC oral health
INTRODUCTION: Artificial intelligence (AI) applications have increased dramatically across a wide range of domains. Dental students will undoubtedly be impacted by the emergence of AI in dentistry.

Psychotropic medications: a descriptive study of prescription trends in Tabriz, Iran, 2021-2022.

BMC psychiatry
INTRODUCTION: Mental disorders, such as anxiety and depression, significantly impacted global populations in 2019 and 2020, with COVID-19 causing a surge in prevalence. They affect 13.4% of the people worldwide, and 21% of Iranians have experienced t...

Assessment of choroidal vessels in healthy eyes using 3-dimensional vascular maps and a semi-automated deep learning approach.

Scientific reports
To assess the choroidal vessels in healthy eyes using a novel three-dimensional (3D) deep learning approach. In this cross-sectional retrospective study, swept-source OCT 6 × 6 mm scans on Plex Elite 9000 device were obtained. Automated segmentation ...

Automated Cone Beam Computed Tomography Segmentation of Multiple Impacted Teeth With or Without Association to Rare Diseases: Evaluation of Four Deep Learning-Based Methods.

Orthodontics & craniofacial research
OBJECTIVE: To assess the accuracy of three commercially available and one open-source deep learning (DL) solutions for automatic tooth segmentation in cone beam computed tomography (CBCT) images of patients with multiple dental impactions.

Efficacy of a deep learning system for automatic analysis of the comprehensive spatial relationship between the mandibular third molar and inferior alveolar canal on panoramic radiographs.

Oral surgery, oral medicine, oral pathology and oral radiology
OBJECTIVE: To develop and evaluate a deep learning (DL) system for predicting the contact and relative position relationships between the mandibular third molar (M3) and inferior alveolar canal (IAC) using panoramic radiographs (PRs) for preoperative...

Radiomics and Deep Learning Model for Benign and Malignant Soft Tissue Tumors Differentiation of Extremities and Trunk.

Academic radiology
RATIONALE AND OBJECTIVES: To develop radiomics and deep learning models for differentiating malignant and benign soft tissue tumors (STTs) preoperatively based on fat saturation T2-weighted imaging (FS-T2WI) of patients.

Non-invasive blood glucose monitoring using PPG signals with various deep learning models and implementation using TinyML.

Scientific reports
Accurate and continuous blood glucose monitoring is essential for effective diabetes management, yet traditional finger pricking methods are often inconvenient and painful. To address this issue, photoplethysmography (PPG) presents a promising non-in...

The application of deep learning in early enamel demineralization detection.

PeerJ
OBJECTIVE: The study aims to develop a diagnostic model using intraoral photographs to accurately detect and classify early detection of enamel demineralization on tooth surfaces.

Predicting noncontact injuries of professional football players using machine learning.

PloS one
Noncontact injuries are prevalent among professional football players. Yet, most research on this topic is retrospective, focusing solely on statistical correlations between Global Positioning System (GPS) metrics and injury occurrence, overlooking t...