AI Medical Compendium Journal:
Academic radiology

Showing 101 to 110 of 317 articles

Predicting Secondary Vertebral Compression Fracture After Vertebral Augmentation via CT-Based Machine Learning Radiomics-Clinical Model.

Academic radiology
RATIONALE AND OBJECTIVES: Secondary vertebral compression fractures (SVCF) are very common in patients after vertebral augmentation (VA). The aim of this study was to establish a radiomic-based model to predict SVCF and specify appropriate treatment ...

Predicting the Prognosis of HIFU Ablation of Uterine Fibroids Using a Deep Learning-Based 3D Super-Resolution DWI Radiomics Model: A Multicenter Study.

Academic radiology
RATIONALE AND OBJECTIVES: To assess the feasibility and efficacy of a deep learning-based three-dimensional (3D) super-resolution diffusion-weighted imaging (DWI) radiomics model in predicting the prognosis of high-intensity focused ultrasound (HIFU)...

Prediction of Anastomotic Leakage in Esophageal Cancer Surgery: A Multimodal Machine Learning Model Integrating Imaging and Clinical Data.

Academic radiology
RATIONALE AND OBJECTIVES: Surgery in combination with chemo/radiotherapy is the standard treatment for locally advanced esophageal cancer. Even after the introduction of minimally invasive techniques, esophagectomy carries significant morbidity and m...

DeepSAP: A Novel Brain Image-Based Deep Learning Model for Predicting Stroke-Associated Pneumonia From Spontaneous Intracerebral Hemorrhage.

Academic radiology
RATIONALE AND OBJECTIVE: Stroke-associated pneumonia (SAP) often appears as a complication following intracerebral hemorrhage (ICH), leading to poor prognosis and increased mortality rates. Previous studies have typically developed prediction models ...

Prospective Deployment of Deep Learning Reconstruction Facilitates Highly Accelerated Upper Abdominal MRI.

Academic radiology
RATIONALE AND OBJECTIVES: To compare a conventional T1 volumetric interpolated breath-hold examination (VIBE) with SPectral Attenuated Inversion Recovery (SPAIR) fat saturation and a deep learning (DL)-reconstructed accelerated VIBE sequence with SPA...

A Comparison of CT-Based Pancreatic Segmentation Deep Learning Models.

Academic radiology
RATIONALE AND OBJECTIVES: Pancreas segmentation accuracy at CT is critical for the identification of pancreatic pathologies and is essential for the development of imaging biomarkers. Our objective was to benchmark the performance of five high-perfor...

A Comparative Study of a Nomogram and Machine Learning Models in Predicting Early Hematoma Expansion in Hypertensive Intracerebral Hemorrhage.

Academic radiology
RATIONALE AND OBJECTIVES: Early identification for hematoma expansion can help improve patient outcomes. Presently, there are many methods to predict hematoma expansion. This study compared a variety of models to find a model suitable for clinical pr...

Assessment of Deep Learning-Based Triage Application for Acute Ischemic Stroke on Brain MRI in the ER.

Academic radiology
RATIONALE AND OBJECTIVES: To assess a deep learning application (DLA) for acute ischemic stroke (AIS) detection on brain magnetic resonance imaging (MRI) in the emergency room (ER) and the effect of T2-weighted imaging (T2WI) on its performance.

The Impact of an Artificial Intelligence Certificate Program on Radiology Resident Education.

Academic radiology
RATIONALE AND OBJECTIVES: The objective of this study was to evaluate the effectiveness of a pilot artificial intelligence (AI) certificate program in aiding radiology trainees to develop an understanding of the evolving role and application of artif...