AI Medical Compendium Journal:
Circulation. Cardiovascular imaging

Showing 1 to 10 of 31 articles

Artificial Intelligence-Enhanced Analysis of Echocardiography-Based Radiomic Features for Myocardial Hypertrophy Detection and Etiology Differentiation.

Circulation. Cardiovascular imaging
BACKGROUND: While echocardiography is pivotal for detecting left ventricular hypertrophy (LVH), it struggles with etiology differentiation. To enhance LVH assessment, we aimed to develop an artificial intelligence algorithm using echocardiography-bas...

Deep Learning-Enabled Assessment of Right Ventricular Function Improves Prognostication After Transcatheter Edge-to-Edge Repair for Mitral Regurgitation.

Circulation. Cardiovascular imaging
BACKGROUND: Right ventricular (RV) function has a well-established prognostic role in patients with severe mitral regurgitation (MR) undergoing transcatheter edge-to-edge repair (TEER) and is typically assessed using echocardiography-measured tricusp...

Patient-Specific Myocardial Infarction Risk Thresholds From AI-Enabled Coronary Plaque Analysis.

Circulation. Cardiovascular imaging
BACKGROUND: Plaque quantification from coronary computed tomography angiography has emerged as a valuable predictor of cardiovascular risk. Deep learning can provide automated quantification of coronary plaque from computed tomography angiography. We...

Predicting Late Gadolinium Enhancement of Acute Myocardial Infarction in Contrast-Free Cardiac Cine MRI Using Deep Generative Learning.

Circulation. Cardiovascular imaging
BACKGROUND: Late gadolinium enhancement (LGE) cardiac magnetic resonance (CMR) is a standard technique for diagnosing myocardial infarction (MI), which, however, poses risks due to gadolinium contrast usage. Techniques enabling MI assessment based on...

Perfect Match: Radiomics and Artificial Intelligence in Cardiac Imaging.

Circulation. Cardiovascular imaging
Cardiovascular diseases remain a significant health burden, with imaging modalities like echocardiography, cardiac computed tomography, and cardiac magnetic resonance imaging playing a crucial role in diagnosis and prognosis. However, the inherent he...

Machine Learning Detects Symptomatic Plaques in Patients With Carotid Atherosclerosis on CT Angiography.

Circulation. Cardiovascular imaging
BACKGROUND: This study aimed to develop and validate a computed tomography angiography based machine learning model that uses plaque composition data and degree of carotid stenosis to detect symptomatic carotid plaques in patients with carotid athero...

Machine Learning and Bias in Medical Imaging: Opportunities and Challenges.

Circulation. Cardiovascular imaging
Bias in health care has been well documented and results in disparate and worsened outcomes for at-risk groups. Medical imaging plays a critical role in facilitating patient diagnoses but involves multiple sources of bias including factors related to...

Fusion Modeling: Combining Clinical and Imaging Data to Advance Cardiac Care.

Circulation. Cardiovascular imaging
In addition to the traditional clinical risk factors, an increasing amount of imaging biomarkers have shown value for cardiovascular risk prediction. Clinical and imaging data are captured from a variety of data sources during multiple patient encoun...