AI Medical Compendium Journal:
Diabetes care

Showing 1 to 8 of 8 articles

A Multitask Deep-Learning System to Classify Diabetic Macular Edema for Different Optical Coherence Tomography Devices: A Multicenter Analysis.

Diabetes care
OBJECTIVE: Diabetic macular edema (DME) is the primary cause of vision loss among individuals with diabetes mellitus (DM). We developed, validated, and tested a deep learning (DL) system for classifying DME using images from three common commercially...

Predicting 10-Year Risk of End-Organ Complications of Type 2 Diabetes With and Without Metabolic Surgery: A Machine Learning Approach.

Diabetes care
OBJECTIVE: To construct and internally validate prediction models to estimate the risk of long-term end-organ complications and mortality in patients with type 2 diabetes and obesity that can be used to inform treatment decisions for patients and pra...

A Machine Learning-Based Predictive Model to Identify Patients Who Failed to Attend a Follow-up Visit for Diabetes Care After Recommendations From a National Screening Program.

Diabetes care
OBJECTIVE: Reportedly, two-thirds of the patients who were positive for diabetes during screening failed to attend a follow-up visit for diabetes care in Japan. We aimed to develop a machine-learning model for predicting people's failure to attend a ...