The COVID-19 pandemic continues to challenge healthcare systems globally, necessitating advanced tools for clinical decision support. Amidst the complexity of COVID-19 symptomatology and disease severity prediction, there is a critical need for robus...
The diagnosis of leukemia is a serious matter that requires immediate and accurate attention. This research presents a revolutionary method for diagnosing leukemia using a Capsule Neural Network (CapsNet) with an optimized design. CapsNet is a cuttin...
We sought to validate the ability of a novel handheld ultrasound device with an artificial intelligence program (AI-POCUS) that automatically assesses left ventricular ejection fraction (LVEF). AI-POCUS was used to prospectively scan 200 patients in ...
Previous research has primarily employed deep learning models such as Convolutional Neural Networks (CNNs), and Recurrent Neural Networks (RNNs) for decoding imagined character signals. These approaches have treated the temporal and spatial features ...
The hippocampus is a critical component of the brain and is associated with many neurological disorders. It can be further subdivided into several subfields, and accurate segmentation of these subfields is of great significance for diagnosis and rese...
Nontuberculous mycobacteria (NTM) infection diagnosis remains a challenge due to its overlapping clinical symptoms with tuberculosis (TB), leading to inappropriate treatment. Herein, we employed noninvasive metabolic phenotyping coupled with comprehe...
Cyclin-dependent kinases (CDKs) play essential roles in regulating the cell cycle and are among the most critical targets for cancer therapy and drug discovery. The primary objective of this research is to derive general structure-activity relationsh...
Alzheimer's disease (AD), the predominant form of dementia, is a growing global challenge, emphasizing the urgent need for accurate and early diagnosis. Current clinical diagnoses rely on radiologist expert interpretation, which is prone to human err...
This study aimed to apply pathomics to predict Matrix metalloproteinase 9 (MMP9) expression in glioblastoma (GBM) and investigate the underlying molecular mechanisms associated with pathomics. Here, we included 127 GBM patients, 78 of whom were rando...
Historically, the analysis of stimulus-dependent time-frequency patterns has been the cornerstone of most electroencephalography (EEG) studies. The abnormal oscillations in high-frequency waves associated with psychotic disorders during sensory and c...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.