AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Accidental Falls

Showing 11 to 20 of 189 articles

Clear Filters

Use of Hearing Aids Embedded with Inertial Sensors and Artificial Intelligence to Identify Patients at Risk for Falling.

Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology
OBJECTIVE: To compare fall risk scores of hearing aids embedded with inertial measurement units (IMU-HAs) and powered by artificial intelligence (AI) algorithms with scores by trained observers.

Development of clinical decision support for patients older than 65 years with fall-related TBI using artificial intelligence modeling.

PloS one
BACKGROUND: Older persons comprise most traumatic brain injury (TBI)-related hospitalizations and deaths and are particularly susceptible to fall-induced TBIs. The combination of increased frailty and susceptibility to clinical decline creates a sign...

Constructing a fall risk prediction model for hospitalized patients using machine learning.

BMC public health
STUDY OBJECTIVES: This study aimed to identify the risk factors associated with falls in hospitalized patients, develop a predictive risk model using machine learning algorithms, and evaluate the validity of the model's predictions.

Predicting fall parameters from infant skull fractures using machine learning.

Biomechanics and modeling in mechanobiology
When infants are admitted to the hospital with skull fractures, providers must distinguish between cases of accidental and abusive head trauma. Limited information about the incident is available in such cases, and witness statements are not always r...

Predicting admission for fall-related injuries in older adults using artificial intelligence: A proof-of-concept study.

Geriatrics & gerontology international
AIM: Pre-injury frailty has been investigated as a tool to predict outcomes of older trauma patients. Using artificial intelligence principles of machine learning, we aimed to identify a "signature" (combination of clinical variables) that could pred...

Application of machine learning for detecting high fall risk in middle-aged workers using video-based analysis of the first 3 steps.

Journal of occupational health
OBJECTIVES: Falls are among the most prevalent workplace accidents, necessitating thorough screening for susceptibility to falls and customization of individualized fall prevention programs. The aim of this study was to develop and validate a high fa...

Enhancing Slip, Trip, and Fall Prevention: Real-World Near-Fall Detection with Advanced Machine Learning Technique.

Sensors (Basel, Switzerland)
Slips, trips, and falls (STFs) are a major occupational hazard that contributes significantly to workplace injuries and the associated financial costs. The application of traditional fall detection techniques in the real world is limited because they...

Predicting In-Hospital Fall Risk Using Machine Learning With Real-Time Location System and Electronic Medical Records.

Journal of cachexia, sarcopenia and muscle
BACKGROUND: Hospital falls are the most prevalent and fatal event in healthcare, posing significant risks to patient health outcomes and institutional care quality. Real-time location system (RTLS) enables continuous tracking of patient location, pro...

Utilizing machine learning to identify fall predictors in India's aging population: findings from the LASI.

BMC geriatrics
BACKGROUND: Depression has a detrimental effect on an individual's mental and musculoskeletal strength multiplying the risk of fall incidents. The current study aims to investigate the association between depression and falls in older adults using ma...

Machine Learning Scoring Reveals Increased Frequency of Falls Proximal to Death in Drosophila melanogaster.

The journals of gerontology. Series A, Biological sciences and medical sciences
Falls are a significant cause of human disability and death. Risk factors include normal aging, neurodegenerative disease, and sarcopenia. Drosophila melanogaster is a powerful model for study of normal aging and for modeling human neurodegenerative ...