AIMC Topic: Adenoma

Clear Filters Showing 1 to 10 of 129 articles

Prediction of recurrence after surgery for pituitary adenoma using machine learning- based models: systematic review and meta-analysis.

BMC endocrine disorders
BACKGROUND: Predicting pituitary adenoma (PA) recurrence after surgical resection is critical for guiding clinical decision-making, and machine learning (ML) based models show great promise in improving the accuracy of these predictions. These models...

Radiomic study of common sellar region lesions differentiation in magnetic resonance imaging based on multi-classification machine learning model.

BMC medical imaging
OBJECTIVE: Pituitary adenomas (PAs), craniopharyngiomas (CRs), Rathke's cleft cysts (RCCs), and tuberculum sellar meningiomas (TSMs) are common sellar region lesions with similar imaging characteristics, making differential diagnosis challenging. Thi...

Microbiome and fragmentation pattern of blood cell-free DNA and fecal metagenome enhance colorectal cancer micro-dysbiosis and diagnosis analysis: a proof-of-concept study.

mSystems
Colorectal cancer (CRC) is the third most common cancer, and it can be prevented by performing early screening. As a hallmark of cancer, the human microbiome plays important roles in the occurrence and development of CRC. Recently, the blood microbio...

A semantic segmentation model for automatic precise identification of pituitary microadenomas with preoperative MRI.

Neuroradiology
PURPOSE: Magnetic resonance imaging (MRI) is an essential technique for diagnosing pituitary adenomas; however, it is also challenging for neurosurgeons to use it to precisely identify some types of microadenomas. A novel neural network model was dev...

Application of an Automated Deep Learning Program to A Diagnostic Classification Model: Differentiating High-Risk Adenomas Among Colorectal Polyps 10 mm or Smaller.

Journal of digestive diseases
OBJECTIVE: This study aimed to develop a computer-aided diagnosis (CADx) model using an automated deep learning (DL) program to classify low- and high-risk adenomas among colorectal polyps ≤ 10 mm with standard white-light endoscopy.

A Novel Natural Language Processing Tool Improves Colonoscopy Auditing of Adenoma and Serrated Polyp Detection Rates.

Journal of gastroenterology and hepatology
BACKGROUND AND STUDY AIMS: Determining adenoma detection rate (ADR) and serrated polyp detection rate (SDR) can be challenging as they usually involve manual matching of colonoscopy and histology reports. This study aimed to validate a Natural Langua...

Non-invasive classification of non-neoplastic and neoplastic gallbladder polyps based on clinical imaging and ultrasound radiomics features: An interpretable machine learning model.

European journal of surgical oncology : the journal of the European Society of Surgical Oncology and the British Association of Surgical Oncology
BACKGROUND: Gallbladder (GB) adenomas, precancerous lesions for gallbladder carcinoma (GBC), lack reliable non-invasive tools for preoperative differentiation of neoplastic polyps from cholesterol polyps. This study aimed to evaluate an interpretable...

Eye-tracking dataset of endoscopist-AI teaming during colonoscopy: Retrospective and real-time acquisition.

Scientific data
Recent studies have demonstrated that integrating AI into colonoscopy procedures significantly improves the adenoma detection rate (ADR) and reduces the adenoma miss rate (AMR). However, few studies address the critical issue of endoscopist-AI collab...

Establishing a preoperative predictive model for gallbladder adenoma and cholesterol polyps based on machine learning: a multicentre retrospective study.

World journal of surgical oncology
BACKGROUND: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperativ...

Machine learning algorithms for predicting delayed hyponatremia after transsphenoidal surgery for patients with pituitary adenoma.

Scientific reports
This study aimed to develop and validate machine learning (ML) models to predict the occurrence of delayed hyponatremia after transsphenoidal surgery for pituitary adenoma. We retrospectively collected clinical data on patients with pituitary adenoma...