AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Adult

Showing 311 to 320 of 12441 articles

Clear Filters

Artificial intelligence models utilize lifestyle factors to predict dry eye related outcomes.

Scientific reports
The purpose of this study is to examine and interpret machine learning models that predict dry eye (DE)-related clinical signs, subjective symptoms, and clinician diagnoses by heavily weighting lifestyle factors in the predictions. Machine learning m...

Lipidomic analysis coupled with machine learning identifies unique urinary lipid signatures in patients with interstitial cystitis/bladder pain syndrome.

World journal of urology
PURPOSE: To identify biomarkers for diagnosis and classification of interstitial cystitis/bladder pain syndrome (IC/BPS) by urinary lipidomics coupled with machine learning.

Effect of Uncertainty-Aware AI Models on Pharmacists' Reaction Time and Decision-Making in a Web-Based Mock Medication Verification Task: Randomized Controlled Trial.

JMIR medical informatics
BACKGROUND: Artificial intelligence (AI)-based clinical decision support systems are increasingly used in health care. Uncertainty-aware AI presents the model's confidence in its decision alongside its prediction, whereas black-box AI only provides a...

Stigmatisation of gambling disorder in social media: a tailored deep learning approach for YouTube comments.

Harm reduction journal
BACKGROUND: The stigmatisation of gamblers, particularly those with a gambling disorder, and self-stigmatisation are considered substantial barriers to seeking help and treatment. To develop effective strategies to reduce the stigma associated with g...

Daily Automated Prediction of Delirium Risk in Hospitalized Patients: Model Development and Validation.

JMIR medical informatics
BACKGROUND: Delirium is common in hospitalized patients and is correlated with increased morbidity and mortality. Despite this, delirium is underdiagnosed, and many institutions do not have sufficient resources to consistently apply effective screeni...

Development and validation of a predictive machine learning model for postoperative long-term diabetes insipidus following transsphenoidal surgery for sellar lesions.

Clinical neurology and neurosurgery
OBJECTIVE: Diabetes Insipidus (DI) is a common complication that occurs following transsphenoidal surgery for sellar lesions. DI is usually transient but can be permanent in select patients. Prior studies have described preoperative risk factors for ...

Enhanced non-invasive machine learning approach for early colorectal cancer detection: Predictive modeling and validation in a Jordanian cohort.

Computers in biology and medicine
BACKGROUND: Colorectal cancer (CRC) ranks as the third most prevalent cancer worldwide, posing significant public health challenges. Late-stage detection often results in poor treatment outcomes, elevating mortality rates. The economic and psychologi...

Existential risk narratives about AI do not distract from its immediate harms.

Proceedings of the National Academy of Sciences of the United States of America
There is broad consensus that AI presents risks, but considerable disagreement about the nature of those risks. These differing viewpoints can be understood as distinct narratives, each offering a specific interpretation of AI's potential dangers. On...

Classification of Grades of Subchondral Sclerosis from Knee Radiographic Images Using Artificial Intelligence.

Sensors (Basel, Switzerland)
Osteoarthritis (OA) is the most common joint disease, affecting over 300 million people worldwide. Subchondral sclerosis is a key indicator of OA. Currently, the diagnosis of subchondral sclerosis is primarily based on radiographic images; however, r...

Deep Learning-Driven Abbreviated Shoulder MRI Protocols: Diagnostic Accuracy in Clinical Practice.

Tomography (Ann Arbor, Mich.)
BACKGROUND: Deep learning (DL) reconstruction techniques have shown promise in reducing MRI acquisition times while maintaining image quality. However, the impact of different acceleration factors on diagnostic accuracy in shoulder MRI remains unexpl...