OBJECTIVE: Prolonged Emergency Department (ED) wait times lead to diminished healthcare quality. Utilizing machine learning (ML) to predict patient wait times could aid in ED operational management. Our aim is to perform a comprehensive analysis of M...
BACKGROUND: The cytological diagnostic process of EUS-FNA smears is time-consuming and manpower-intensive, and the conclusion could be subjective and controversial. Moreover, the relative lack of cytopathologists has limited the widespread implementa...
BACKGROUND: Accurately diagnosing Anxiety-Depression Comorbidity Syndrome in Gastroenterology Inpatients (ADCS-GI) shows significant challenges as traditional diagnostic methods fail to meet expectations due to patient hesitance and non-psychiatric h...
OBJECTIVES: The potential of medical imaging to non-invasively assess intratumoral heterogeneity (ITH) is increasingly being recognized. This study aimed to investigate the value of the ITH-based deep learning model for preoperative prediction of his...
BACKGROUND: Cholestasis, characterized by impaired bile flow, impacts cognitive function through systemic mechanisms, including inflammation and metabolic dysregulation. Despite its significance, targeted predictive models for cognitive impairment in...
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease worldwide. Cardiovascular disease (CVD) and NAFLD share multiple common risk factors. Life's Crucial 9 (LC9), a novel indicator for comprehensive assessment of card...
In this observational study, we used data from 59,936 hospitalized adults to construct a model. For the models constructed with all 53 variables, all five models achieved acceptable performance with the validation cohort, with the extreme gradient bo...
Detection of Alzheimer's Disease (AD) is critical for successful diagnosis and treatment, involving the common practice of screening for Mild Cognitive Impairment (MCI). However, the progressive nature of AD makes it challenging to identify its causa...
Spinal cord stimulation (SCS) is a well-accepted therapy for refractory chronic pain. However, predicting responders remain a challenge due to a lack of objective pain biomarkers. The present study applies machine learning to predict which patients w...
Aneurysmal subarachnoid haemorrhage (aSAH) is a type of stroke with high mortality and morbidity. This study aimed to identify novel aSAH risk factors by combining machine learning (ML) and traditional statistical methods. Using the UK Biobank, we id...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.