AIMC Topic: Aged

Clear Filters Showing 1161 to 1170 of 13246 articles

Utilizing machine learning and geographic analysis to improve Post-crash traffic injury management and emergency response systems.

International journal of injury control and safety promotion
Traffic injuries are a major public health concern globally. This study uses machine learning (ML) and geographic analysis to analyse road traffic fatalities and improve traffic safety in Nakhon Ratchasima Province, Thailand. Data on road traffic fat...

A machine learning approach to risk-stratification of gastric cancer based on tumour-infiltrating immune cell profiles.

Annals of medicine
BACKGROUND: Gastric cancer (GC) is a highly heterogeneous disease, and the response of patients to clinical treatment varies substantially. There is no satisfactory strategy for predicting curative effects to date. We aimed to explore a new method fo...

Incorporating frequency domain features into radiomics for improved prognosis of esophageal cancer.

Medical & biological engineering & computing
Esophageal cancer is a highly aggressive gastrointestinal malignancy with a poor prognosis, making accurate prognostic assessment essential for patient care. The performance of the esophageal cancer prognosis model based on conventional radiomics is ...

Predicting response to non-invasive brain stimulation in post-stroke upper extremity motor impairment: the importance of neurophysiological and clinical biomarkers.

Neurological sciences : official journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology
BACKGROUND: Non-invasive brain stimulation (NIBS) is a promising approach to enhance upper extremity motor impairment (UEMI) recovery in post-stroke individuals. However, variability in treatment response poses a significant challenge. Identifying ne...

Machine-Learning-Based Computed Tomography Radiomics Regression Model for Predicting Pulmonary Function.

Academic radiology
RATIONALE AND OBJECTIVES: Chest computed tomography (CT) radiomics can be utilized for categorical predictions; however, models predicting pulmonary function indices directly are lacking. This study aimed to develop machine-learning-based regression ...

Interpretable Machine Learning Radiomics Model Predicts 5-year Recurrence-Free Survival in Non-metastatic Clear Cell Renal Cell Carcinoma: A Multicenter and Retrospective Cohort Study.

Academic radiology
RATIONALE AND OBJECTIVES: To develop and validate a computed tomography (CT) radiomics-based interpretable machine learning (ML) model for predicting 5-year recurrence-free survival (RFS) in non-metastatic clear cell renal cell carcinoma (ccRCC).

Prediction of Clavien Dindo Classification ≥ Grade III Complications After Epithelial Ovarian Cancer Surgery Using Machine Learning Methods.

Medicina (Kaunas, Lithuania)
Ovarian cancer surgery requires multiple radical resections with a high risk of complications. The aim of this single-centre, retrospective study was to determine the best method for predicting Clavien-Dindo grade ≥ III complications using machine l...

[Not Available].

Vertex (Buenos Aires, Argentina)
Introducción: la ideación suicida es el pensamiento de autoeliminación no siempre reportada por los pacientes en test de depresión. El objetivo fue identificar y analizar síntomas depresivos del cuestionario de salud del paciente-9 asociados a ideaci...

Development of an explainable prediction model for portal vein system thrombosis post-splenectomy in patients with cirrhosis.

BMJ health & care informatics
BACKGROUND: Portal vein system thrombosis (PVST) is a common and potentially life-threatening complication following splenectomy plus pericardial devascularisation (SPDV) in patients with cirrhosis and portal hypertension. Early prediction of PVST is...