BACKGROUND: To develop and validate a model that integrates clinical data, deep learning radiomics, and radiomic features to predict high-risk patients for cage subsidence (CS) after lumbar fusion.
BACKGROUND: Deep learning (DL) has been shown to be successful in interpreting radiographs and aiding in fracture detection and classification. However, no study has aimed to develop a computer vision model for tibia plateau fractures using the Schat...
Clinical oncology (Royal College of Radiologists (Great Britain))
Mar 1, 2025
AIMS: To assess geometric accuracy and dosimetric impact of a deep learning segmentation (DLS) model on a large, diverse dataset of head and neck cancer (HNC) patients treated with intensity-modulated proton therapy (IMPT).
This study aims to develop a deep learning model using high-resolution vessel wall imaging (HR-VWI) to differentiate symptom-related intracranial and extracranial plaques, which is crucial for stroke treatment and prevention. We retrospectively analy...
OBJECTIVES: Develop an interpretable machine learning model to detect patients with newly diagnosed psoriatic arthritis (PsA) in a cohort of psoriasis patients and identify important clinical indicators of PsA in primary care.
PURPOSE: Lumbosacral nerve root anomalies are relatively rare but can be a risk factor for intraoperative nerve injury. However, it is often difficult to evaluate them with preoperative imaging. We developed a software that automatically generates th...
OBJECTIVES: The evaluation of the prognosis of patients with acute ischemic stroke (AIS) is of great significance in clinical practice. We aim to evaluate the feasibility and effectiveness of diffusion-weighted imaging (DWI) image-based radiomics fea...
Machine learning approaches including deep learning models have shown promising performance in the automatic detection of Parkinson's disease. These approaches rely on different types of data with voice recordings being the most used due to the conve...
This study aimed to develop an interpretable machine learning model to predict methylene blue (MB) responsiveness in adult patients with refractory septic shock and to identify key factors influencing MB responsiveness using the SHapley Additive exPl...
Aging clinical and experimental research
Mar 1, 2025
OBJECTIVES: Sarcopenic obesity (SO), characterized by the coexistence of obesity and sarcopenia, is an increasingly prevalent condition in aging populations, associated with numerous adverse health outcomes. We aimed to identify and validate an expla...
Join thousands of healthcare professionals staying informed about the latest AI breakthroughs in medicine. Get curated insights delivered to your inbox.