AIMC Topic: Algorithms

Clear Filters Showing 131 to 140 of 26915 articles

MRI based early Temporal Lobe Epilepsy detection using DGWO based optimized HAETN and Fuzzy-AAL Segmentation Framework (FASF).

PloS one
This work aims to promote early and accurate diagnosis of Temporal Lobe Epilepsy (TLE) by developing state-of-the-art deep learning techniques, with the goal of minimizing the consequences of epilepsy on individuals and society. Current approaches fo...

Mapping the EORTC QLQ-C30 and QLQ-LC13 to the SF-6D utility index in patients with lung cancer using machine learning and traditional regression methods.

Health and quality of life outcomes
BACKGROUND: Preference-based measures of health-related quality of life (HRQoL), such as the Short Form Six-Dimension (SF-6D) is essential for health economic evaluations. However, these measures are rarely included in clinical trials for lung cancer...

stGRL: spatial domain identification, denoising, and imputation algorithm for spatial transcriptome data based on multi-task graph contrastive representation learning.

BMC biology
BACKGROUND: Spatial transcriptomics now enables sequencing while preserving the spatial location of cells. This significantly enhances researchers' understanding of cellular and tissue functions in their spatial context. However, due to current techn...

The value of machine learning based on spectral CT quantitative parameters in the distinguishing benign from malignant thyroid micro-nodules.

BMC cancer
BACKGROUND AND AIMS: More cases of thyroid micro-nodules have been diagnosed annually in recent years because of advancements in diagnostic technologies and increased public health awareness. To explore the application value of various machine learni...

Deep learning-based automated classification of choroidal layers in en face swept-source optical coherence tomography images.

BMC ophthalmology
BACKGROUND: This study aims to develop a deep learning-based algorithm dedicated to the automated classification of choroidal layers in en face swept-source optical coherence tomography (SS-OCT) images of the eye.

Ultrasound-based machine learning model to predict the risk of endometrial cancer among postmenopausal women.

BMC medical imaging
BACKGROUND: Current ultrasound-based screening for endometrial cancer (EC) primarily relies on endometrial thickness (ET) and morphological evaluation, which suffer from low specificity and high interobserver variability. This study aimed to develop ...

Enhanced pulmonary nodule detection with U-Net, YOLOv8, and swin transformer.

BMC medical imaging
RATIONALE AND OBJECTIVES: Lung cancer remains the leading cause of cancer-related mortality worldwide, emphasizing the critical need for early pulmonary nodule detection to improve patient outcomes. Current methods encounter challenges in detecting s...

Computed tomography-based radiomics predicts prognostic and treatment-related levels of immune infiltration in the immune microenvironment of clear cell renal cell carcinoma.

BMC medical imaging
OBJECTIVES: The composition of the tumour microenvironment is very complex, and measuring the extent of immune cell infiltration can provide an important guide to clinically significant treatments for cancer, such as immune checkpoint inhibition ther...

Automated 3D segmentation of the hyoid bone in CBCT using nnU-Net v2: a retrospective study on model performance and potential clinical utility.

BMC medical imaging
OBJECTIVE: This study aimed to identify the hyoid bone (HB) using the nnU-Net based artificial intelligence (AI) model in cone beam computed tomography (CBCT) images and assess the model's success in automatic segmentation.

Construction and validation of HBV-ACLF bacterial infection diagnosis model based on machine learning.

BMC infectious diseases
OBJECTIVE: To develop and validate a novel diagnostic model for detecting bacterial infections in patients with hepatitis B virus-related acute-on-chronic liver failure (HBV-ACLF) using advanced machine learning algorithms. The focus is on improving ...