AI Medical Compendium Topic:
Area Under Curve

Clear Filters Showing 521 to 530 of 1155 articles

Microaneurysms detection in color fundus images using machine learning based on directional local contrast.

Biomedical engineering online
BACKGROUND: As one of the major complications of diabetes, diabetic retinopathy (DR) is a leading cause of visual impairment and blindness due to delayed diagnosis and intervention. Microaneurysms appear as the earliest symptom of DR. Accurate and re...

Artificial Intelligence to Detect Papilledema from Ocular Fundus Photographs.

The New England journal of medicine
BACKGROUND: Nonophthalmologist physicians do not confidently perform direct ophthalmoscopy. The use of artificial intelligence to detect papilledema and other optic-disk abnormalities from fundus photographs has not been well studied.

Resolving challenges in deep learning-based analyses of histopathological images using explanation methods.

Scientific reports
Deep learning has recently gained popularity in digital pathology due to its high prediction quality. However, the medical domain requires explanation and insight for a better understanding beyond standard quantitative performance evaluation. Recentl...

Prediction of physical violence in schizophrenia with machine learning algorithms.

Psychiatry research
Patients with schizophrenia have been shown to have an increased risk for physical violence. While certain features have been identified as risk factors, it has been difficult to integrate these variables to identify violent patients. The present stu...

Differential Diagnosis of Benign and Malignant Thyroid Nodules Using Deep Learning Radiomics of Thyroid Ultrasound Images.

European journal of radiology
PURPOSE: We aimed to propose a highly automatic and objective model named deep learning Radiomics of thyroid (DLRT) for the differential diagnosis of benign and malignant thyroid nodules from ultrasound (US) images.

Opening the black box of artificial intelligence for clinical decision support: A study predicting stroke outcome.

PloS one
State-of-the-art machine learning (ML) artificial intelligence methods are increasingly leveraged in clinical predictive modeling to provide clinical decision support systems to physicians. Modern ML approaches such as artificial neural networks (ANN...

Efficacy for Differentiating Nonglaucomatous Versus Glaucomatous Optic Neuropathy Using Deep Learning Systems.

American journal of ophthalmology
PURPOSE: We sought to assess the performance of deep learning approaches for differentiating nonglaucomatous optic neuropathy with disc pallor (NGON) vs glaucomatous optic neuropathy (GON) on color fundus photographs by the use of image recognition.

Cloud-based ECG monitoring using event-driven ECG acquisition and machine learning techniques.

Physical and engineering sciences in medicine
An approach is proposed for the detection of chronic heart disorders from the electrocardiogram (ECG) signals. It utilizes an intelligent event-driven ECG signal acquisition system to achieve a real-time compression and effective signal processing an...

LEAP: Using machine learning to support variant classification in a clinical setting.

Human mutation
Advances in genome sequencing have led to a tremendous increase in the discovery of novel missense variants, but evidence for determining clinical significance can be limited or conflicting. Here, we present Learning from Evidence to Assess Pathogeni...