AIMC Topic: Smokers

Clear Filters Showing 1 to 10 of 23 articles

Lysophospholipid metabolism, clinical characteristics, and artificial intelligence-based quantitative assessments of chest CT in patients with stable COPD and healthy smokers.

Scientific reports
The specific role of lysophospholipids (LysoPLs) in the pathogenesis of chronic obstructive pulmonary disease (COPD) is not yet fully understood. We determined serum LysoPLs in 20 patients with stable COPD and 20 healthy smokers using liquid chromato...

Testing a Machine Learning-Based Adaptive Motivational System for Socioeconomically Disadvantaged Smokers (Adapt2Quit): Protocol for a Randomized Controlled Trial.

JMIR research protocols
BACKGROUND: Individuals who are socioeconomically disadvantaged have high smoking rates and face barriers to participating in smoking cessation interventions. Computer-tailored health communication, which is focused on finding the most relevant messa...

Artificial Intelligence-based CT Assessment of Bronchiectasis: The COPDGene Study.

Radiology
Background CT is the standard method used to assess bronchiectasis. A higher airway-to-artery diameter ratio (AAR) is typically used to identify enlarged bronchi and bronchiectasis; however, current imaging methods are limited in assessing the extent...

Explainable AI reveals changes in skin microbiome composition linked to phenotypic differences.

Scientific reports
Alterations in the human microbiome have been observed in a variety of conditions such as asthma, gingivitis, dermatitis and cancer, and much remains to be learned about the links between the microbiome and human health. The fusion of artificial inte...

Predicting the first smoking lapse during a quit attempt: A machine learning approach.

Drug and alcohol dependence
BACKGROUND: Just-in-time adaptive interventions (JITAI) aim to prevent smoking lapse using tailored support delivered via mobile technology in the moments when it is most needed. Effective smoking cessation JITAI rely on the development of accurate d...

Using Machine Learning and Smartphone and Smartwatch Data to Detect Emotional States and Transitions: Exploratory Study.

JMIR mHealth and uHealth
BACKGROUND: Emotional state in everyday life is an essential indicator of health and well-being. However, daily assessment of emotional states largely depends on active self-reports, which are often inconvenient and prone to incomplete information. A...