AIMC Topic: Bayes Theorem

Clear Filters Showing 1231 to 1240 of 1826 articles

Exploring uncertainty measures in deep networks for Multiple sclerosis lesion detection and segmentation.

Medical image analysis
Deep learning networks have recently been shown to outperform other segmentation methods on various public, medical-image challenge datasets, particularly on metrics focused on large pathologies. For diseases such as Multiple Sclerosis (MS), however,...

Bayesian additive regression trees and the General BART model.

Statistics in medicine
Bayesian additive regression trees (BART) is a flexible prediction model/machine learning approach that has gained widespread popularity in recent years. As BART becomes more mainstream, there is an increased need for a paper that walks readers throu...

Active deep learning for the identification of concepts and relations in electroencephalography reports.

Journal of biomedical informatics
The identification of medical concepts, their attributes and the relations between concepts in a large corpus of Electroencephalography (EEG) reports is a crucial step in the development of an EEG-specific patient cohort retrieval system. However, th...

Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study.

Scientific reports
A comprehensive screening method using machine learning and many factors (biological characteristics, Helicobacter pylori infection status, endoscopic findings and blood test results), accumulated daily as data in hospitals, could improve the accurac...

Machine learning in predicting graft failure following kidney transplantation: A systematic review of published predictive models.

International journal of medical informatics
INTRODUCTION: Machine learning has been increasingly used to develop predictive models to diagnose different disease conditions. The heterogeneity of the kidney transplant population makes predicting graft outcomes extremely challenging. Several kidn...

Sex estimation: a comparison of techniques based on binary logistic, probit and cumulative probit regression, linear and quadratic discriminant analysis, neural networks, and naïve Bayes classification using ordinal variables.

International journal of legal medicine
The performance of seven classification methods, binary logistic (BLR), probit (PR) and cumulative probit (CPR) regression, linear (LDA) and quadratic (QDA) discriminant analysis, artificial neural networks (ANN), and naïve Bayes classification (NBC)...

Prediction model development of late-onset preeclampsia using machine learning-based methods.

PloS one
Preeclampsia is one of the leading causes of maternal and fetal morbidity and mortality. Due to the lack of effective preventive measures, its prediction is essential to its prompt management. This study aimed to develop models using machine learning...

Comparing regression, naive Bayes, and random forest methods in the prediction of individual survival to second lactation in Holstein cattle.

Journal of dairy science
In this study, we compared multiple logistic regression, a linear method, to naive Bayes and random forest, 2 nonlinear machine-learning methods. We used all 3 methods to predict individual survival to second lactation in dairy heifers. The data set ...

Stochasticity from function - Why the Bayesian brain may need no noise.

Neural networks : the official journal of the International Neural Network Society
An increasing body of evidence suggests that the trial-to-trial variability of spiking activity in the brain is not mere noise, but rather the reflection of a sampling-based encoding scheme for probabilistic computing. Since the precise statistical p...

Force classification during robotic interventions through simulation-trained neural networks.

International journal of computer assisted radiology and surgery
PURPOSE: Intravitreal injection is among the most frequent treatment strategies for chronic ophthalmic diseases. The last decade has seen a serious increase in the number of intravitreal injections, and with it, adverse effects and drawbacks. To tack...