AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 281 to 290 of 980 articles

Clear Filters

Triple and quadruple optimization for feature selection in cancer biomarker discovery.

Journal of biomedical informatics
The proliferation of omics data has advanced cancer biomarker discovery but often falls short in external validation, mainly due to a narrow focus on prediction accuracy that neglects clinical utility and validation feasibility. We introduce three- a...

Integrating anoikis and ErbB signaling insights with machine learning and single-cell analysis for predicting prognosis and immune-targeted therapy outcomes in hepatocellular carcinoma.

Frontiers in immunology
BACKGROUND: Hepatocellular carcinoma (HCC) poses a significant global health challenge due to its poor prognosis and limited therapeutic modalities. Anoikis and ErbB signaling pathways are pivotal in cancer cell proliferation and metastasis, but thei...

Development of a prognostic model related to homologous recombination deficiency in glioma based on multiple machine learning.

Frontiers in immunology
BACKGROUND: Despite advances in neuro-oncology, treatments of glioma and tools for predicting the outcome of patients remain limited. The objective of this research is to construct a prognostic model for glioma using the Homologous Recombination Defi...

Precision HER2: a comprehensive AI system for accurate and consistent evaluation of HER2 expression in invasive breast Cancer.

BMC cancer
BACKGROUND: With the development of novel anti-HER2 targeted drugs, such as ADCs, it has become increasingly important to accurately interpret HER2 expression in breast cancer. Previous studies have demonstrated high intra-observer and inter-observer...

Development and validation of machine learning models for diagnosis and prognosis of lung adenocarcinoma, and immune infiltration analysis.

Scientific reports
The aim of our study was to develop robust diagnostic and prognostic models for lung adenocarcinoma (LUAD) using machine learning (ML) techniques, focusing on early immune infiltration. Feature selection was performed on The Cancer Genome Atlas (TCGA...

Machine learning predicts cuproptosis-related lncRNAs and survival in glioma patients.

Scientific reports
Gliomas are the most common tumor in the central nervous system in adults, with glioblastoma (GBM) representing the most malignant form, while low-grade glioma (LGG) is a less severe. The prognosis for glioma remains poor even after various treatment...

Machine learning algorithms and biomarkers identification for pancreatic cancer diagnosis using multi-omics data integration.

Pathology, research and practice
PURPOSE: Pancreatic cancer is a lethal type of cancer with most of the cases being diagnosed in an advanced stage and poor prognosis. Developing new diagnostic and prognostic markers for pancreatic cancer can significantly improve early detection and...

Integrating machine learning and multi-omics analysis to develop an asparagine metabolism immunity index for improving clinical outcome and drug sensitivity in lung adenocarcinoma.

Immunologic research
Lung adenocarcinoma (LUAD) is a malignancy affecting the respiratory system. Most patients are diagnosed with advanced or metastatic lung cancer due to the fact that most of their clinical symptoms are insidious, resulting in a bleak prognosis. Given...

Machine learning-based discovery of UPP1 as a key oncogene in tumorigenesis and immune escape in gliomas.

Frontiers in immunology
INTRODUCTION: Gliomas are the most common and aggressive type of primary brain tumor, with a poor prognosis despite current treatment approaches. Understanding the molecular mechanisms underlying glioma development and progression is critical for imp...

Novel prognostic signature for hepatocellular carcinoma using a comprehensive machine learning framework to predict prognosis and guide treatment.

Frontiers in immunology
BACKGROUND: Hepatocellular carcinoma (HCC) is highly aggressive, with delayed diagnosis, poor prognosis, and a lack of comprehensive and accurate prognostic models to assist clinicians. This study aimed to construct an HCC prognosis-related gene sign...