AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Biomarkers, Tumor

Showing 341 to 350 of 980 articles

Clear Filters

Development and validation of an artificial intelligence model for predicting de novo distant bone metastasis in breast cancer: a dual-center study.

BMC women's health
OBJECTIVE: Breast cancer has become the most prevalent malignant tumor in women, and the occurrence of distant metastasis signifies a poor prognosis. Utilizing predictive models to forecast distant metastasis in breast cancer presents a novel approac...

Deep learning-based diagnosis and survival prediction of patients with renal cell carcinoma from primary whole slide images.

Pathology
There is an urgent clinical demand to explore novel diagnostic and prognostic biomarkers for renal cell carcinoma (RCC). We proposed deep learning-based artificial intelligence strategies. The study included 1752 whole slide images from multiple cent...

Towards key genes identification for breast cancer survival risk with neural network models.

Computational biology and chemistry
Breast cancer, one common malignant tumor all over the world, has a considerably high rate of recurrence, which endangers the health and life of patients. While more and more data have been available, how to leverage the gene expression data to predi...

Integrated machine learning screened glutamine metabolism-associated biomarker SLC1A5 to predict immunotherapy response in hepatocellular carcinoma.

Immunobiology
Hepatocellular carcinoma (HCC) stands as one of the most prevalent malignancies. While PD-1 immune checkpoint inhibitors have demonstrated promising therapeutic efficacy in HCC, not all patients exhibit a favorable response to these treatments. Gluta...

Integrating bioinformatics and machine learning methods to analyze diagnostic biomarkers for HBV-induced hepatocellular carcinoma.

Diagnostic pathology
Hepatocellular carcinoma (HCC) is a malignant tumor. It is estimated that approximately 50-80% of HCC cases worldwide are caused by hepatitis b virus (HBV) infection, and other pathogenic factors have been shown to promote the development of HCC when...

Differentially localized protein identification for breast cancer based on deep learning in immunohistochemical images.

Communications biology
The mislocalization of proteins leads to breast cancer, one of the world's most prevalent cancers, which can be identified from immunohistochemical images. Here, based on the deep learning framework, location prediction models were constructed using ...

Machine learning-based biomarker screening for acute myeloid leukemia prognosis and therapy from diverse cell-death patterns.

Scientific reports
Acute myeloid leukemia (AML) exhibits pronounced heterogeneity and chemotherapy resistance. Aberrant programmed cell death (PCD) implicated in AML pathogenesis suggests PCD-related signatures could serve as biomarkers to predict clinical outcomes and...

CT-based deep learning radiomics biomarker for programmed cell death ligand 1 expression in non-small cell lung cancer.

BMC medical imaging
BACKGROUND: Programmed cell death ligand 1 (PD-L1), as a reliable predictive biomarker, plays an important role in guiding immunotherapy of lung cancer. To investigate the value of CT-based deep learning radiomics signature to predict PD-L1 expressio...

Machine learning-based screening and validation of liver metastasis-specific genes in colorectal cancer.

Scientific reports
Colorectal liver metastasis (CRLM) is challenging in the clinical treatment of colorectal cancer. Limited research has been conducted on how CRLM develops. RNA sequencing data were obtained from the Gene Expression Omnibus (GEO) and The Cancer Genome...

A stemness-based signature with inspiring indications in discriminating the prognosis, immune response, and somatic mutation of endometrial cancer patients revealed by machine learning.

Aging
Endometrial cancer (EC) is a fatal gynecologic tumor. Bioinformatic tools are increasingly developed to screen out molecular targets related to EC. Our study aimed to identify stemness-related prognostic biomarkers for new therapeutic strategies in E...