AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

Brain Stem

Showing 11 to 17 of 17 articles

Clear Filters

Supervised machine learning-based classification scheme to segment the brainstem on MRI in multicenter brain tumor treatment context.

International journal of computer assisted radiology and surgery
PURPOSE: To constrain the risk of severe toxicity in radiotherapy and radiosurgery, precise volume delineation of organs at risk is required. This task is still manually performed, which is time-consuming and prone to observer variability. To address...

Robust Machine Learning-Based Correction on Automatic Segmentation of the Cerebellum and Brainstem.

PloS one
Automated segmentation is a useful method for studying large brain structures such as the cerebellum and brainstem. However, automated segmentation may lead to inaccuracy and/or undesirable boundary. The goal of the present study was to investigate w...

Stacking denoising auto-encoders in a deep network to segment the brainstem on MRI in brain cancer patients: A clinical study.

Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society
Delineation of organs at risk (OARs) is a crucial step in surgical and treatment planning in brain cancer, where precise OARs volume delineation is required. However, this task is still often manually performed, which is time-consuming and prone to o...

A Cascaded Deep Convolutional Neural Network for Joint Segmentation and Genotype Prediction of Brainstem Gliomas.

IEEE transactions on bio-medical engineering
GOAL: Automatic segmentation of brainstem gliomas and prediction of genotype (H3 K27M) mutation status based on magnetic resonance (MR) images are crucial but challenging tasks for computer-aided diagnosis in neurosurgery. In this paper, we present a...

Clinical applications of control systems models: The neural integrators for eye movements.

Progress in brain research
The first models that were proposed to account for the neural control of eye movements applied a classic control systems approach, including feedback, and measured system responses to sinusoidal and transient stimuli. Although such models provided ma...

Objective auditory brainstem response classification using machine learning.

International journal of audiology
OBJECTIVE: The objective of this study was to use machine learning in the form of a deep neural network to objectively classify paired auditory brainstem response waveforms into either: 'clear response', 'inconclusive' or 'response absent'.

Deep Learning-Based Delineation of Head and Neck Organs at Risk: Geometric and Dosimetric Evaluation.

International journal of radiation oncology, biology, physics
PURPOSE: Organ-at-risk (OAR) delineation is a key step in treatment planning but can be time consuming, resource intensive, subject to variability, and dependent on anatomical knowledge. We studied deep learning (DL) for automated delineation of mult...