AI Medical Compendium Topic

Explore the latest research on artificial intelligence and machine learning in medicine.

CA-125 Antigen

Showing 1 to 10 of 20 articles

Clear Filters

Evaluation of Combined Cancer Markers With Lactate Dehydrogenase and Application of Machine Learning Algorithms for Differentiating Benign Disease From Malignant Ovarian Cancer.

Cancer control : journal of the Moffitt Cancer Center
BACKGROUND: The differential diagnosis of ovarian cancer is important, and there has been ongoing research to identify biomarkers with higher performance. This study aimed to evaluate the diagnostic utility of combinations of cancer markers classifie...

Loop-mediated isothermal amplification (LAMP) and machine learning application for early pregnancy detection using bovine vaginal mucosal membrane.

Biochemical and biophysical research communications
An early and accurate pregnancy diagnosis method is required to improve the reproductive performance of cows. Here we developed an easy pregnancy detection method using vaginal mucosal membrane (VMM) with application of Reverse Transcription-Loop-med...

Machine learning-based delta check method for detecting misidentification errors in tumor marker tests.

Clinical chemistry and laboratory medicine
OBJECTIVES: Misidentification errors in tumor marker tests can lead to serious diagnostic and treatment errors. This study aims to develop a method for detecting these errors using a machine learning (ML)-based delta check approach, overcoming limita...

Fragmentomics features of ovarian cancer.

International journal of cancer
Ovarian cancer (OC) is a major cause of cancer mortality in women worldwide. Due to the occult onset of OC, its nonspecific clinical symptoms in the early phase, and a lack of effective early diagnostic tools, most OC patients are diagnosed at an adv...

Machine Learning-Enhanced Extraction of Biomarkers for High-Grade Serous Ovarian Cancer from Proteomics Data.

Scientific data
Comprehensive biomedical proteomic datasets are accumulating exponentially, warranting robust analytics to deconvolute them for identifying novel biological insights. Here, we report a strategic machine learning (ML)-based feature extraction workflow...

Enhancing the diagnostic accuracy of colorectal cancer through the integration of serum tumor markers and hematological indicators with machine learning algorithms.

Clinical & translational oncology : official publication of the Federation of Spanish Oncology Societies and of the National Cancer Institute of Mexico
BACKGROUND: Colorectal cancer has a high incidence and mortality rate due to a low rate of early diagnosis. Therefore, efficient diagnostic methods are urgently needed.

Indirect reference interval estimation using a convolutional neural network with application to cancer antigen 125.

Scientific reports
Indirect methods for reference interval (RI) estimation, which use data acquired from routine pathology testing, have the potential to accelerate the establishment of RIs to account for variables such as gender and age to improve clinical assessments...

Application of machine learning techniques in the diagnosis of endometriosis.

BMC women's health
OBJECTIVE: The aim of this study is to assess the use of machine learning methodologies in the diagnosis of endometriosis (EM).

Machine learning models in evaluating the malignancy risk of ovarian tumors: a comparative study.

Journal of ovarian research
OBJECTIVES: The study aimed to compare the diagnostic efficacy of the machine learning models with expert subjective assessment (SA) in assessing the malignancy risk of ovarian tumors using transvaginal ultrasound (TVUS).

Exploring Ovarian Cancer Prediction Models and Potential Markers Using Machine Learning.

Annals of clinical and laboratory science
OBJECTIVE: To develop machine learning models, facilitate a more accurate diagnosis of ovarian cancer (OC), and explore potential markers.