AIMC Topic: Case-Control Studies

Clear Filters Showing 501 to 510 of 872 articles

A deep learning framework for automatic diagnosis of unipolar depression.

International journal of medical informatics
BACKGROUND AND PURPOSE: In recent years, the development of machine learning (ML) frameworks for automatic diagnosis of unipolar depression has escalated to a next level of deep learning frameworks. However, this idea needs further validation. Theref...

Keratoconus detection using deep learning of colour-coded maps with anterior segment optical coherence tomography: a diagnostic accuracy study.

BMJ open
OBJECTIVE: To evaluate the diagnostic accuracy of keratoconus using deep learning of the colour-coded maps measured with the swept-source anterior segment optical coherence tomography (AS-OCT).

Using path signatures to predict a diagnosis of Alzheimer's disease.

PloS one
The path signature is a means of feature generation that can encode nonlinear interactions in data in addition to the usual linear terms. It provides interpretable features and its output is a fixed length vector irrespective of the number of input p...

Injecting and removing suspicious features in breast imaging with CycleGAN: A pilot study of automated adversarial attacks using neural networks on small images.

European journal of radiology
PURPOSE: To train a CycleGAN on downscaled versions of mammographic data to artificially inject or remove suspicious features, and to determine whether these AI-mediated attacks can be detected by radiologists.

Radiomics of small renal masses on multiphasic CT: accuracy of machine learning-based classification models for the differentiation of renal cell carcinoma and angiomyolipoma without visible fat.

European radiology
OBJECTIVE: To investigate the discriminative capabilities of different machine learning-based classification models on the differentiation of small (< 4 cm) renal angiomyolipoma without visible fat (AMLwvf) and renal cell carcinoma (RCC).

Alcohol outlets and firearm violence: a place-based case-control study using satellite imagery and machine learning.

Injury prevention : journal of the International Society for Child and Adolescent Injury Prevention
INTRODUCTION: This article proposes a novel method for matching places based on visual similarity, using high-resolution satellite imagery and machine learning. This approach strengthens comparisons when the built environment is a potential confounde...

Prediction of future gastric cancer risk using a machine learning algorithm and comprehensive medical check-up data: A case-control study.

Scientific reports
A comprehensive screening method using machine learning and many factors (biological characteristics, Helicobacter pylori infection status, endoscopic findings and blood test results), accumulated daily as data in hospitals, could improve the accurac...

Machine Learning Models for Diagnosing Glaucoma from Retinal Nerve Fiber Layer Thickness Maps.

Ophthalmology. Glaucoma
PURPOSE: To assess the diagnostic accuracy of multiple machine learning models using full retinal nerve fiber layer (RNFL) thickness maps in detecting glaucoma.

Functional connectivity-based classification of autism and control using SVM-RFECV on rs-fMRI data.

Physica medica : PM : an international journal devoted to the applications of physics to medicine and biology : official journal of the Italian Association of Biomedical Physics (AIFB)
Considering the unsatisfactory classification accuracy of autism due to unsuitable features selected in current studies, a functional connectivity (FC)-based algorithm for classifying autism and control using support vector machine-recursive feature ...

Machine-learning algorithms to identify key biosecurity practices and factors associated with breeding herds reporting PRRS outbreak.

Preventive veterinary medicine
Investments in biosecurity practices are made by producers to reduce the likelihood of introducing pathogens such as porcine reproductive and respiratory syndrome virus (PRRSv). The assessment of biosecurity practices in breeding herds is usually don...